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Optimal Estimation of the Roll Rate of the
Antitank Missile—Part |: Kalman Filter with Exact M odel

Miodrag Curéin, PhD, (Eng)”

An efficient method of estimation and prediction of theroll rate of the antitank missile using Kalman filter with exact
model of motion is presented for the case when the roll angle is measured by free gyro and measured data are
corrupted by noise. First standard deviation of the roll rate is estimated by “two-point differencing” and then the
formulae for estimation are derived using exact model of motion. By numerical simulation, the efficiency of the
models is tested and function of standard deviation of the missile roll rate with respect to normalized process noise is
determined. The optimal value of the process noise is determined to achieve minimal dispersion of the estimate of the

roll angleand roll rate.

Key words: antitank missile, missile roll, roll rate, angular velocity, Kalman filter, free gyro, stochastic process,

numerical simulation.

Glossary of Symbols

A —matrix of the dynamic coefficients of the missile
in rolling motion;

B —control matrix;

F(t,ty) —transition matrix from t, to t, or fundamental
matrix;

Fy —discrete transition matrix;

Gy —discrete control matrix;

Jy —axial principal moment of inertia, [kgm®];

L —aerodynamic rolling moment, [Nm];

—specific (reduced) active rolling moment,
lo lo=1/dyxL(a=p=p=q=r=0), [rad/s’];
—specific (reduced) damping rolling moment,

ly |, =1/Jxx0L/op, [rad/s];

| —specific (reduced) disturbing rolling moment,

ait [rad/s’];

H —measurement matrix;

Kk —discrete matrix of the Kalman filter gain;

My —discrete covariance matrix representing errors of
the previous estimates;

Ny —discrete matrix of the measurement noise;

Ng —number of the measured angles of roll position

per one revolution of missile (gyroscope
characteristic), [rad, °J;
P, —discrete covariance matrix representing errors of
the states after estimates;
—projections of the missile angular rate on the

p.q.r .

body fixed axis system, [rad/s];
Qy —discrete covariance matrix of the process noise;
q® —power spectral density of the process noise of the

derivative of the angular acceleration, [rad?/s’];

S =o? —variance of the random component of the rolling

moment (angular acceleration), /S =+/GPTy ;

S(t)  ~continual matrix of the process noise;

S» —power spectral density of the measurement noise
of the missile angle of roll, [rad®/(1/s)];

Ry —discrete covariance matrix of measurement
noise;

Te, Ty —sampling interval of the roll angle at time t, and
attime t=0, [s];

—time, [s];

—control matrix (column);

—process noise matrix;

K —discrete process noise matrix

=<~

X —space state matrix (column);

Xk —discrete space state matrix (column);

Xy —discrete estimate of space state matrix based on
the mathematical model (column);

X —discrete estimate of space state matrix based on
Kalman filter (column);

Xk —discrete measured space state matrix (column);

Xo —initial discrete space state matrix (column);

D —missile roll angle, [rad, °J;

A®@, —sampling interval of the missile roll angle
(gyroscope characteristic), [rad, °];

Op ~standard deviation of the roll rate [rad/s];

Co —standard deviation of the roll angle (gyroscope

characteristic), [rad, °];
Lower indexes
0 —initial state;
k —values at instant t,;
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Upper indexes

T —matrix transposition;
—time derivative;

A —estimated value based on Kalman filter;
—estimated value based on the mathematical

~ model,;

* —measured quantity, reduced — non dimensional

quantity;

I ntroduction

NE of the basic factors influencing the precession of a

guided antitank missile with one channel pulse
modulation control system, with aerodynamic fin or thrust
vector (MALJUKA, HOT, MILAN, FAGOT), is the
accuracy of prediction of the time of actuation of the
control device from equilibrium position. For this reason,
accurate estimation and prediction of the roll angle is
necessary. In order to estimate the roll angle, estimation of
the roll angular rate is necessary, [1]

Angular rate p, (Fig.1), is changed during the flight for two
main reasons. Firstly, the equilibrium angular rate is changed
due to the change of the missile speed. Secondly, due to the
missile movement around the center of mass, flight parameters
are changed. In order to measure the angle of roll, the free
gyroscope is built into the missile. Measurement is done
discretely with some measurement error.
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Figure 1. Roll angular rate and dynamic coefficients for a hypothetical
missile [1]

Roll angle sensor is an encoder consisting of a disk fixed
to outer gyroscope frame which is being rotated. On the
perimeter of the disk there are ng radial slots, and on the

missile rolling body there is a photo diode and light source.
The light, while passing through slots, produces current
impulse based on which the time of passing the slot on the
disk through referent point is determined. Accordingly,
after each angle kxA®y, time t is measured, where

A®y =27 /ng = const. For the purpose of this work initial

value Ny =8 is assumed for the analysis, so that

ADy =7/8,[1].

It is known that optimal estimate of the system states can
be obtained by applying Kalman filter, assuming that a
necessary condition is fulfilled [2, 4, 7].

In this work, methods for estimating angular rate are
considered in order to obtain a condition for which, when
fulfilled, the estimates of angular rates have minimal value
of standard deviations.

Estimate of the angular rate based on finite
difference method of thefirst order

Angular rate, necessary to calculate angles and time of
actuation of the control device, can be determined based on
the measured values of the roll angle using finite difference
method of the first order (“two-point differencing”)

_ D =D A
Po=— = (1)

where: @, and @,_, — measured values of angles at moment
t and t.;, and T = tx - t; — time interval between two
successive measurements of the angles @, . Roll angle @ is

measured by free gyroscope with a measurement error. When
angular rate is constant, error of determining angular rate
increases only due to measurement error of the roll angle.
But, in this article, for the missile model, which is used,
angular rate is variable (Figures 1 and 2), so sampling time
interval Ty is a function of the time of flight. For the purpose
of this work all the necessary data is calculated for
hypothetical missile by using program SimDVPTR, [8].

Let it be assumed that the measurement error is an
uncorrelated quantity, and that its probable density error
obeys Gauss’ law with null mathematical expectation and
standard deviation o . Further, it will be assumed that the

measurement error of the roll angle is small compared to
the measured angle itself, so from formulae (1) error of
determining angular rate and its dispersion is

op=0’(pc)=

2
(Ti ; (02 (0)+0* (@1)] =2 fr’kg )
k

where o3 — dispersion of the measured roll angle by free
gyro.
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Figure 2. Estimate of the root mean square deviation of the roll angular
rate &p obtained by “two-point differencing” as a function of time,

ogp = 0.87mrad .

In the preceding analysis it was assumed that dispersion
of the measured angle is same in time.

The error of estimation of angular rate can be reduced by
increasing the order of numerical algorithm. This analysis
will not be done here. However, the conclusion of using
such an approach will be given. With increasing the order
of algorithm, error is decreased due to the applied method
(process noise is reduced), but error due to measurement is
increased.
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Process noise

Differential equations of missile rolling motion in body
fixed coordinate system are [1, 5, 6]:

b= (Lo +Lupaf + Ly fon+ Lpp+ L) )

@ = p+(qsin @ +r cos @) tan O

where p —roll rate, r — yaw rate,  — pitch rate, @ — roll
angle, ® — inclination angle, J, — longitudinal principal
mass moments of inertia and L, — aerodynamic rolling
moment due to fin bank angle, L, — derivative of rolling
moment with respect to the roll rate, Lg,— disturbing
rolling moment, & — angle of attack, £ — angle of sideslip,
Om — angle of deflection of aerodynamic control surface.
Quantities Ly, L, and Ly

parameters « , S, o, and Mach number Ma .

depend on kinematic

It can be seen that equations of rolling motion (3) are
nonlinear functions of the kinematic quantities of motion.
They can be solved exactly only by solving numerically the
complete system of equations. This is not acceptable for the
estimation purpose for two reasons. Firstly, the equations
are highly nonlinear and complex to be solved in real time,
and secondly, disturbing moments which are stochastic
functions of time always act on the missile. It is known that
the disturbing moment can arise due to non steady
nonlinear aerodynamic phenomena and due to the reactive
moments of the rocket motor. Bearing this in mind,
differential equations of the rolling motion for the
estimation purposes will be written in the following form:

D=p 4
@ =p=Il,(Ma)+1,(Ma) p+l4(Ma,a, B,5p,...)

where lo and |, specific (reduced) active and damping
rolling moment and |44 (Ma,a,p,6m,...) — specific
disturbing rolling moment which depends on kinematical
parameters of the missile movement. It is a random
function of time. Statistics of this quantity are not known,
but it can be determined by detailed simulation and testing
in flight. For the purpose of this work it will be assumed
that the disturbing moment is Gaussian white noise with
null mathematical expectation. In Fig.1 dependence of
coefficients lp and I, on time of flight is shown for a
hypothetical missile [1].

Model equations and Kalman filter equations

Eventually, based on expression (4), equations of rolling
motion (process equations) can be written in the following
form

d=p Q)

p:|0+|pp+w

where W =y is disturbing specific moment, or process
noise.
If state vector is introduced

x=[® p|', (6)

where X =@, %X, = p, equations (5) can be written in the
following form

BRI MR I

Or in matrix notation

X =A(t)x(t)+u(t)+w(t) )
where: matrix of dynamic coefficient is
T
control vector
u=[0 1,7, (10)
and process noise matrix.
w=[0 W] (11)

Continual covariance matrix of the process noise S(t) is
defined by

E[w(t)W'(r)|=S(t)5(t—7) (12)

By numerical solution of state equations (8) on the time
interval to= 0 to t; for initial state vector

x(0)=x,=[0 pp] (13)

Exact solution of the state vector X (t)can be obtained.

In this work fourth order Runge-Kutta method is used while
integration step is chosen from conditions to achieve the
required accuracy of solution.

In order to estimate the state variables by Kalman filter
in real time, it is necessary to determine discrete state
equations. To achieve this, the starting point will be the
general solution of the differential equation (8) given in the
form:

t
x(t):F(t,to)x(to)+jF(t,r)[u(r)+W(r)]dT (14)

fo
where is X(ty)=X, initial state vector, and F(t,t,)

transition matrix from t; to t, or fundamental matrix. It is
given by the following expression:

A(r)dr

F(t,t))=¢® (15)
Upon applying discretization procedure [1], equation (14)
becomes discrete, unlike the state equation

Xk =FRiXko + Gl + Wi (16)

Matrices F, and G, are calculated assuming that matrices

of dynamic coefficients Iy and |, do not change much in
time of discretization.
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Fundamental matrix Fy can be determined by numerical
integration of matrix differential equation (8) for
u=w =0, or by expanding matrix exponential function
(15) in series and taking specific numbers of terms:

Tk
I fdr
I:k =ef ~ [F(T)]TZTK =
a7

=|:I+AT+A272+..} = ATk
2 =Tk

Meanwhile, based on the assumption that on sampling
interval coefficients |y and |, do not change significantly, so
that they can be considered constant, system of equations
(7) can be integrated for W =0, and close form solution
obtained:

CD:CDO_:(:)t_:%(l_elpt)—F:(l—elpt) (18)

et oy et
p=pe B (1 e )
where p, and @, initial angular rate and initial roll angle
respectively. When applied on the integration interval
G-t =Te (t=T, Po=Pci1, P=P, DPo=Px,
@ = @) expression (18) becomes

lox-1 los-i I p.k-1Tk
Cpk :@k,l—l - Tk_ 2' (1—ep' )—
p.k-1 Ip.k—l

— pk—l (1 _e4 pk-1Tk )

I p.k-1

(19)

Ipk-iTk _ loket ( I p.k—1Tk
= e p _ UKkl 1 —e P.
P« = Px-1 o

From these equations it is easy to obtain matrices Fy and Gy

_ {1 (o)1 )} (20)

0 el p.k-1Tk

Tk

_ 0 _|:1/Ip.kf1Tk +1/|F2)_k71(1_elpvk—lTk )]
e _(l/lp}kq)(l—e"i’-k-ﬂk)

Expressions (19) are used for simulation of the roll angle
and roll rate — for the calculation of “true” values.
However, for the estimation of the states in real time it is
better suited to use simpler approximate expressions

ey

obtained when function € is expanded in to series. This

is justified because € is a small number compared to
unity. If only linear terms are taken in the second row in the
approximate polynomial for Fy and Gy in (20-21) and
quadratic terms are neglected, matrices Fy and G, become

_ |1 z+05l,22 ([0 0 1 0 ~
Qk_.ﬂo 1+1,7 }[0 sHHo.SIPrz 1+1p7 dr =

1 Tk +0'5|pk71T|(2
~ ' 22
H( |:O 1+1 p,k—lTk ( )
0 0.5T¢
Gy » k 23
‘ [0 T } =

With these matrices, discrete difference equation (16)

becomes
{@k}: I T +0.50 T [d%}r
Px 0 I+l Tk Pr-1

(24)
_ [0 O.STq[ 0 }
0 T JLloke1+Wko
or in a developed form
Q)k = d)kfl + (Tk + OSI p.kflTkz) pk,] +
(25)
+0-5Tk2 (|o.k71 +W k- )
P = (1+ 1 paer T ) Pt + T (ot + Wik )
Discrete covariance matrix of the process noise is
Tk
Qx = J‘F(T)S(T) F'(r)dr (26)
0
where covariance matrix of the process noise is
00
s®)-=[g o @

and § - dispersion of the random component of the rolling
moment.

Upon substitution of F(7) defined by equation (22) into
expression (26) for Ty =7 and F'(r), obtained by

transposition of F and matrix of process noise defined by
(27), Qk becomes

(28)

B {(1/4)I,21k_1Tk4 +(2/3) s T +(1/2) T |

(1/3) gt T+ lpua T + T
Every Ty seconds @ is measured with error ny, so
discrete measurement equation is
@; = Q)k + nk (29)

where @ is the measured value of @. It is assumed that ny

is Gaussian white noise.
Upon introduction of column matrix of measurement
values

X; = [qﬂ ~[@; o] (30)

and column matrix of the process noise



CURCIN M.: OPTIMAL ESTIMATION OF THE ROLL RATE OF THE ANTITANK MISSILE — PART I: KALMAN FILTER WITH EXACT MODEL 7

n
nk=|:6(:|=[nk O]T (31)
discrete state measurement matrix is obtained
X =Hx, +n,, k=12,.. (32)
where the measurement matrix is
H= [1 O] (33)
Covariance matrix of the measurement noise is
2
_ T1_|op O
Rk_E[nknkJ_{ ) 0} (34)

The Riccati equations which define Kalman filter gains
are:

M, = FkPk—lFl;r +Qx

Kie =MHT (HMH" +Ry ) (35)

Pk = (l—KkH)Mk

By solving these equations the matrix of gains of the
Kalman filter K, and discrete matrix of the variances of

differences between the estimated and true values of states
are obtained, while estimated values of the states are
obtained by Kalman filter as follows

X =>2k+Kk(x;—>zk) (36)

In eq. (36) X, is a discrete two-dimensional vector of the
estimates of the states based on the mathematical model

Xy =R Xkt + Gy Uiy 37

Since only one state variable of the roll angle @, is
measured, covariance matrix of the measurement noise is

scalar Ry, =R.=05, and Riccati equations can be

simplified. When products of matrices in the second and
third Riccati equations are expanded, the following can be
obtained

MHT:[MH le]Ta HM:[MII Mlz]s
(38)
HMHT:MII

(HMHT +R )" =(My +03)"

In the expressions above, the subscript “K” is omitted to
simplify writing.
Upon substitution of (38) into (35) for K =[K; K2]T it
results in:
My,
2

39
Mll+o-d7 ( )

Coefficients M;; and M;, are members of the first column
of the matrix M. Further, it is

(I—KH):[(I__KT) ﬂ (40)

The third Riccati equation if expanded has the form:

1-K )M (I—K )M }
pP= ( 1) Vi 1) Vo 41
[—K2M11+M12 -K,;My; + My, “h

Note that matrices M and P are symmetrical.

In the expression for Kalman filter (36) only two gains
which are different from zero on each step of correction of
estimates of the states in the gain matrix exist. These gains
do not depend on the estimated values of states since
fundamental matrix, which goes into Riccati equations (35)
does not depend on the estimated values of states, but only
on dynamic coefficients and the sampling time.

Simulation of the measured values of theroll angle

By testing gyroscopes in laboratory and by measurement
in flight, characteristics of gyroscopes can be obtained. For
the purpose of this work, standard deviation of
measurement of the roll angle by free gyroscope will be
taken o, =0.05° =0.87 mrad, while mathematical
expectation is assumed to be zero. Based on this
assumption, the measured noise is simulated by pseudo-
normal distribution of random numbers n, ~ N (O, o ) .

Based on the calculation and measurement in flight mean
value of the initial angular rate and estimate of its standard
deviation is determined for the missile in question:

Py = 62.81ad/s, o, =3rad/s, [1]. Note that these values

correspond to normal temperature of propellant of the
rocket motor. For the initial value of the roll angle @, =0

is taken. With these values, the measured values of the roll
angles during flight are simulated by using program
SImDVPTR, [8]. Furthermore, the roll rate is simulated, as
well as estimates of root mean deviation of the roll rate &,

obtained by “two-point differencing” in function of time. It
is shown in Fig.2 along with the simulated roll rate. For the
simulation by Monte-Karlo method [3] 200 realizations of
the trajectory were used. From Fig.2 it can be seen that
values of &, are several times greater in the vicinity of

high changes of the roll rate compared to intervals where
the roll rate is changed monotonously.

Initialization of parameters of the Kalman filter

For initialization of Kalman filter, it is necessary to
know initial values of variances of errors of the states.
Discrete matrix of variances of the differences between the
estimated and true values of states Py (variance of error of
estimate of the states after the correction of states) is

Pk :E|:(Xk —)A(k)(xk —)A(k)T:| =
(42)

Suppose that there is no process noise in the system. For
determining the value of the matrix Py in the first instant by
using expression (42) for the estimation of the roll angle

(ék)kﬂ the measured values of the angle — @ can be

used, and for the estimation of the roll rate values which are
obtained by “two-point differencing” according to
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expression (1). Statistics of these values are determined in
[1], so covariance matrix on the first step of iteration is

_ Ué O'QZJ/TO
(PO)”_L—ED/TO 20(3;/T02} @

where T, is sampling time for k=0, e.g. T, =t, —t,. For
the chosen values of the parameters
(O'(,, =0.05°=0.87mrad, T, =0.0126s) the following is

obtained:

1 T, S[1 80
_ 2 0 |_ 7
(P0)3=0_O-@[1/T0 2/T02}_7'5 <10 [80 12800} (44)

When simulation of the measurement is done with
nominal values of the dynamic coefficients (§ =0), with

measurement noise as it is given in the previous section and
initialization of matrix P, done with values given by (44),
coefficients of Kalman filter converge to zero very fast and
the filter gives true values of the roll angle. This case is an
idealization and serves only for testing purposes.

As previously said, in real flight dynamic coefficients
diverge from nominal values due to various reasons.
Therefore, for the initialization of matrix P, it is necessary
to take dispersion of the states which occurs due to the
process noise. This influence is expressed through matrix
Q given by formula (28) applied at initial instant of time

According to that

0, = 5| USN5TS +(Y2D)lpeTs +(Y3)T5 | (V4) 50T +(2/3) 0Ts +(2) Ty’
(/) 150Te! +(2/3)1poTo +(1/2) T |

Po =(Po )3 _o+tQo (46)

For the estimation of states — roll angle and roll rate, by
using Kalman filter, it is necessary to know the values of

dynamic coefficients |o(t) u I,(t) (Fig.1). In real flight,
dynamic coefficients always diverge from nominal, which

means that they are not known on trajectory, i.e. there exists
the process noise. Numerical simulation shows that

deviation of Iy(t) coefficient can be of the order of a few
up to ten percents. Therefore, in order to estimate states by
Kalman filter, nominal values of dynamic coefficients

should be used, while for the simulation of the measured
values of the states no nominal values of dynamic

coefficient ,(t) is used

Lo (t)+w (t) (47)

where quantity W is the process noise, which is used for
modeling the unknown component of the rolling moment. It
is assumed that it is white noise with zero mathematical
expectation.

E[w (t)(r) ]=S(t)s(t-7) (48)

Consequently, for the simulation of real values of states by
using program SEMDVPTR value S = (0.05 x lg)* is used.
For the estimation of states nominal value of the specific
moment lo(t) and variance S = (0.05 x ly)*are used.
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Figure 3. Estimates of standard deviations and coefficients of Kalman
filter with exact model; o= 0.87 mrad, m= 0, §=(0.05 x |0)2_

(1/3)150T6 +1poTe + Ty 43)
In Fig.3 results of calculation obtained by using Kalman
filter with formulas derived in this section are shown. It can
be seen that by using the filters, roll angle and roll rate are
well estimated. This was expected because all necessary
conditions concerning the measured and process noise for
applying Kalman filter are fulfilled.

Deviation of the real rolling moment from nominal one
in flight usually obeys Gaussian law in statistical sense. For
e.g., due to deviation of the propellant temperature of the
rocket motor, or temperature of air from nominal values,
the speed of flight will not be equal to nominal value, but
will deviate from nominal value by some deterministic
value different from zero. This value can be up to 20% of
the nominal value for extreme values of temperature. The
question is whether in this case Kalman filter can be used
for estimation of the states, because the process noise is not
with null mathematical exception. Answer to that question
will be given in the following analysis.

For the simulation of real values of the states by using
program SIMDVPTR it will be taken

Lo(t)=[1o(t)] g + M + = (1+0.05)[1o(t)] ,, +

W~ N(0,5),

meaning that the dynamic coefficient in flight is 5% greater
than nominal. For covariance of random quantity W

S =(0.05x1y)* will be considered.
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Figure 4. Estimates of the standard deviations and coefficients of the
Kalman filter. 6= 0.87 mrad, m= 0, §=(0.05 x lp)*.

For estimation of the nominal state value of specific
moment |y(t) variance § :(0.05><I0)2 is taken, so the

same value is used in the simulation.

In Fig.4 results of simulation are shown. It can be seen
that estimates of the roll angle and roll rate are good, except
in the vicinity of minimum value of p(t) which

corresponds the time instant t~ 0.4s. Close to this point
standard deviation of the roll rate has maximal value, which
is two times greater than that of the steady state value, but it
is approximately equal to the third value of that, which is
obtained by “two-point differencing” for the same instant of
time (Fig.2). Based on that, it can be concluded that for the
estimation of the roll angle and roll rate Kalman filter with
exact model can be used even in case when the process
noise has not got zero mean value. Filter gains and
variances after the points of great changes of the roll rate
converge to steady value very fast.

Analysis of the applied methods
In Table 1 values of root mean square of deviations of
the estimated values of roll the angle and roll rates with
respect to the true values are presented. The calculation is
done by program which uses Monte-Carlo simulation with
200 generated trajectories for testing.
In the analyses measurement noise is simulated by

normal distribution of random numbers N (0, aﬁ,), and

process noise by normal distribution of random numbers
N (m,o?), where o, =0.05" =0.87mrad, m =0.05ly,

oy =0.05l,. For estimation, the power spectral densities
which correspond the standard deviation of the simulated

values were used; thatis R=03, § =of.

Table 1. Estimated values for § = o7 =(0.05l,)*

ROOT MEAN SQUARE DEVIATION WITH

ESTIMATION RESPECT TO TRUE VALUE
No. METHOD Roll angle [mrad] Roll rate [rad/s]
Maximal | Steady | Maximal Steady value
value value value
. | Two-pointdif-| g g7 | g7 0.35
ferencing
2. | Ralmanfilter | =605 | o77 | 0120 0.069
with exact model

Analysis of the results in the Table show that by using
Kalman filter with exact model root mean square deviation
of the roll rate three times less than values obtained by
numerical “two-point differencing” is obtained.

Up to this point analysis was made with the same values
of power spectral density of the random moment § to that

which is used for simulation of the measurement roll angle
@ . Meanwhile, for the estimation of states variables in real
time, power spectral density of the random component of
the rolling moment is not known. It can be determined by
simulating and analyzing of experimental values. For that,
the influence of § on the estimation of states will be

analyzed.

8
7
6
751\
E Maximal values
p b*a 4 (First part of trajectory)
3
Steady values
2 K
1 \
0
4x10™ 4x1073 4x1072 4x107! 4x10°
§/1y

Figure 5. Estimates of rms deviations of the roll angle in function of
S /|02 I op =0.87mrad .

0.4 ‘
Maximal values
03 (First part of trajectory)
8 \< Steady values
(:'o_ 0.2 \
0.1 \\ 7/—_
0.0
4x10™ 4x1073 4x1072 4x10°! 4x10°
S/1y

Figure 6. Estimates of rms deviations of the roll rate in function of S /1Z :

ogp =0.87mrad .
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In Fig.5 estimate of standard deviation of the roll angle
obtained by Kalman filter with exact mathematical model
against reduced variance of the process noise S /I¢ is
shown.

With the increase of the parameter of the process noise

S /I3 maximal values of the estimates converge to

steady values and for § /I >5x107 they are practically
equal to the steady values. Steady values have the minimum
of 65 ~0.77mrad for S/If =0.02, so, 11% less than

from the value used for simulation (o, ~ 0.87 mrad ). Note

that for value S /I ~0.02, where steady values have
minimum, maximal values of the estimates are twice the
minimal values (Fig.5).

Standard deviation of the estimate of the roll rate by
Kalman filter with exact mathematical model with respect

to the true roll rate against the reduced process noise S /17
is shown in Fig.6 for maximal values, which as it was
explained, appears at the initial part of the trajectory, and
for steady values, which are associated with the second part
of the trajectory. It can be seen that curve has a minimum of

6,=0.061rad/s for § /15 ~1.2x107.
When the roll angular rate is determined along the
trajectory, the estimate of the roll angular acceleration,

which is necessary for the estimation of the roll angle, can
be obtained by “two-point differencing” as follows

Ao P P Abe
Px = At At 49)
Conclusion

The problem of efficient estimation of the roll angle and
roll rate is considered for the antitank guided missile for
which the angle is measured by free gyro with the presence
of measurement noise. Expression for the estimation of the
standard deviation of the roll rate is derived for Kalman
filter with exact mathematical model and by numerical
differentiation using first order finite difference method
(“two-point differencing”).

Efficiency of the proposed method is analyzed by
numerical simulation. Numerical simulation is used to obtain
the estimate of the standard deviation of the roll rate with
respect to the reduced value of the process noise. In order to
achieve minimal dispersion of the estimate of the roll angle
and roll rate the optimal value of the process noise is
determined. It has been shown that there exists minimum of
the estimate of standard deviation for some value of the
process noise. Three times less estimate of standard deviation
of the roll rate in the transition process (maximal values) and
about ten times smaller steady value compared to the values
obtained by numerical differentiation using first order finite
difference method (“two-point differencing”) is achieved
applying Kalman filter.
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Appendix

Assuming that measurement noise is with zero expected
value it can be obtained:

E(¢k —ék)z :E(djk —QE)Z :E(nk)2 = O'é,

e[(00-0) - p)] - (00 0) 3% |-

ZE{nkpk—(¢k—¢;)@k}:pk]}:
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E[(pk—pi)z]— [(pk—pk)}— CT"”

E[(a-a)(p - b)) -
2
:E{(Q)k—@:)(pk—cp_r;pkzﬂ 2_o|_-‘1257
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Optimalna ocena ugaone brzine valjanja
protivtenkovske rakete — Deo I: Kalmanov filter sa tanim modelom

Predstavljen efikasan metod za ocenu i predikciju ugaone brzine valjanja protivoklopne rakete koriste¢i Kalmanaov
filter sa tatnim modelom Kkretanja pri ¢emu se meri ugao valjanja rakete pomocéu slobodnog Ziroskopa, a merena
veli¢ina je optereéena Sumom. Standardna devijacija ugaone brzine valjanja je prvo odredena diferenciranjem kroz
dve tacke, a zatim su izvedene neophodne formule za ocenu standardne devijacije pomoéu Kalmanovog filtra sa
taénim modelom. Efikasnost modela je testirana numeri¢kom simulacijom pri ¢emu je odredena zavisnost standardne
devijacije ugaone brzine valjanja u odnosu na normalizovani procesni Sum. Odredena je optimalna vrednost
procesnog Suma iz uslova da se postigne minimalna ocena disperzije ugla valjanja i ugaone brzine valjanja.

Kljucne reci: protivoklopna raketa, valjanje rakete, brzina valjanja, ugaona brzina, Kalmanov filtar, slobodni
Ziroskop, sluc¢ajni proces, numeric¢ka simulacija.

OnTrMmanbHas ONeHKa YriIOBOM CKOPOCTH KpeHa
IPOTUBOTAHKOBOM pakeTwl - Yacts I: punbsTp Kanmana co
0e301MmunO00YHONA MOJIEIILIO

3nech npejicrasieH o(GheKTAEBHBINA METOR AJIS OLCHKH B ONPENEICHUS YIIIOBOH CKOPOCTH KPEeHa IIPOTHBOTAHKOBOH
paxeTs! Ipu mons3oBaENd (unbTpa Kanmana co 6e30mmGovHON MOJIENbIO ABIDKEHUS, IPH YEM H3MEPAETCS YToil
KpeHa pakeThl IPH IOMOIM CBOGONHOTO I'MPOCKONA, & M3MepsieMas BelIMmdrMHa ycWieHHa mymoM. CraHmapTHas
AeBHALHs YTIIOBOM CKOPOCTH KpeHa CHadasa onpefieseHa aucggepeHmmanyueil yepes jBe TOYKH, a TOTOM BhIBEJICHEI
HEOOXOJIAMBIE YPaBHEHNS I ONEHKY CTaHJApTHOM fAeBHanmy npy nomomu ¢uwisTpa Kanmana co 6e30mmO01HOM
Mofienblo. OdGheKTHBHOCTL MOJENH HCOBIThbIBAHA IHM(PPOBBIM MOJEIMPOBAHMEM, IIPH Y&M OIpefeseHa
3aBACHMOCTh CTaHHAApTHOH JEeBHAlMM YIJIOBOM CKOPOCTH KpeHa IO OTHONMEHWIO K HOPMAlM30BaHHOMY
obpaboraHHOoMy myMy. 3/1eCh ONPEAEICHO ONTHMAIBHOE 3HaYeHHe OOpaboTaHHOTO IIyMa U3 YCIOBHI OCTIKECHAS
MHWHMMAJBHOH OIICHKHA PAcCesHUS YIIa KpeHa U YIIIOBO#E CKOPOCTH KpEHa.

Katouesvie cao6a: IPOTHBOTAHKOBAA PaKeTa, KPEH PaKeThl, CKOPOCTh KPEHa, YIIIOBasi CKOPOcTh, (huneTp Kanmana,
cBOGOJHBI TMPOCKOIL, CIyJaiHEIi mpolece, UG pOBOe MOJIETAPOBaHHUE.

Estimation optimale de la vitesse d’angle de roulement chez le missile
antichar -premiére Partie I: le filtre de Kalman avec le modéle exact

Ce papier expose une méthode pour évaluer et prédire la vitesse d’angle de roulement chez le missile antichar au
moyen de filtre de Kalman avec le modéle exact du mouvement et en mesurant I’angle de roulement du missile a
I’aide du gyroscope libre alors que I’unité mesurée est altérée par le bruit. La déviation ordinaire de la vitesse d’angle
de roulement est déterminé d’abord par la différenciation a travers deux points; ensuite, on a dérivé les formules
nécessaires pour évaluer la dérivation ordinaire au moyen du filtre de Kalman avec le modéle exact. L’efficacité du
modéele a été testée par la simulation numérique en déterminant aussi la dépendance ordinaire de la déviation de
vitesse d’angle de roulement par rapport au bruit normalisé de procés. On a déterminé la valeur optimale du bruit de
procés pour réaliser I’estimation minimale de la dispersion de I’angle de roulement et la vitesse d’angle de roulement.

Mots clés: missile antichar, roulement du missile, vitesse de roulement, vitesse d’angle, filtre de Kalman, gyroscope
libre, procés stochastique.



