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Asymptotic stability of singular continuous time delayed system 

Dragutin Lj. Debeljković, PhD (Eng)1)

This paper gives sufficient conditions for the stability of linear singular continuous delay systems of the form 
( ) ( ) ( )0 1E t A t A t τ= + −x x x

                                                          

. These new, delay–independent conditions are derived using on approach based on 
Lyapunov’s direct method. Two different methods are applied: one based on crucial idea presented in paper by 
Owens, Debeljković (1985) and the second in an anthological paper by Pandolfi (1980). Numerical examples have been 
worked out to show the applicability of the results derived. 
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Introduction 
T should be noticed that in some systems consider their 
character of dynamic and static state must be considered 

at the same time. Singular systems (also referred to as 
degenerate, descriptor, generalized, differential - algebraic 
systems or semi – state) are those the dynamics of which 
are governed by a mixture of algebraic and differential 
equations. Recently, many scholars have paid much 
attention to singular systems and obtaining numerous good 
results. The complex nature of singular systems causes 
many difficulties in the analytical and numerical treatment 
of such systems, particularly when there is a need for their 
control. 

The problem of investigation of time delay systems has 
been exploited over many years. Time delay is very often 
encountered in various technical systems, such as electric, 
pneumatic and hydraulic networks, chemical processes, 
long transmission lines, etc. The existence of pure time lag, 
regardless if it is present in the control or/and that state, 
may cause undesirable system transient response, or even 
instability. Consequently, the problem of stability analysis 
for this class of systems has been one of the main interests 
for many researchers. In general, the introduction of time 
delay factors makes the analysis much more complicated.  

It must be emphasized that there is a lot of systems that 
are singular and demonstrate the phenomena of time delay 
simultaneously; such systems are called the singular 
differential systems with time delay. 

These systems have many special characters. To describe 
them more exactly, to design them more accurately and to 
control them more effectively, tremendous effort to investigate 
them must be made, but that is obviously very difficult work. 
In recent references, authors has discussed such systems and 
obtained certain results. But in the study of such systems, there 
are still many problems to be considered. When the general 
time delay systems are considered, in the existing stability 
criteria, two main approaches have been adopted. 

 

Namely, one direction is to contrive the stability 
condition which does not include the information on the 
delay, and the other is the method which takes it into 
account. The former case is often called the delay - 
independent criteria, and generally provides simple 
algebraic conditions. In that sense, the question of their 
stability deserves great attention.  

In the short overview that follows, only the results 
achieved in the area of Lyapunov stability of linear, 
continuous singular time delay systems (LCSTDS) will be 
taken into consideration. In that sense, the contributions 
presented in papers tackling the problem of robust stability, 
stabilization of this class of systems with parameter 
uncertainty (see the list of references) as well as other 
questions in connection with the stability of (LCSTDS) 
being necessarily transformed by Lyapunov – Krasovski 
functional, to the state space model in the form of 
differential – integral equations, Fridman (2001, 2002) will 
not be discussed. 

Moreover, over the last few years, numerous papers have 
been published in the area of linear discrete descriptor time 
delay systems, but this discussion is out of the scope of this 
paper. The list of references provides more insight into this 
metter. 

To the best of our knowledge, some attempts in stability 
investigation of (LCSTDS) was due to Saric (2001, 2002) 
where sufficent conditions for convergence of appropriate 
fundamental matrix were established. 

Recently, in the paper of Xu et al. (2002) the problem of 
robust stability and stabilization for uncertain (LCSTDS) 
was addressed and necessary and sufficient conditions  
were obtained in terms of strict LMI. Moreover in the same 
paper, using suitable canonical description of (LCSTDS), a 
rather simple criterion for asymptotic stability testing was 
also proposed. 

In this paper a quite different approach to this problem is 
presented. Namely, the result is expressed directly in terms 
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of matrices ,  and  naturally occurring in the 
system model and avoiding the need to introduce any 
canonical form into the statement of the Theorem. 

E 0A 1A

The geometric theory of consistency leads to the natural 
class of positive definite quadratic forms on the subspace 
containing all solutions. This fact makes possible the 
construction of Lyapunov stability theory even for the 
(LCSTDS) in the sense that asymptotic stability is 
equivalent to the existence of symmetric, positive definite 
solutions to a weak form of Lyapunov matrix equation 
incorporating the condition which refers to the time delay 
term. 

A definite aim of this paper is to present new results 
concerning asymptotic stability of a particular class of 
linear continuous singular time delay systems. 

Notation and preliminaries 
R  – real vector space 
C  – complex vector space 
I  – unit matrix 

( ) n n
ijF f ×= ∈R  – real matrix 

TF  – transpose of matrix F  
0F >  – positive definite matrix 
0F ≥  – positive semi definite matrix 

( )Fℜ  
– range of matrix F  

( )FN  – null space (kernel) of matrix F  

( )Fλ  
– eigen value of matrix F  

( ) ( )Fσ
 

– singular value of matrix F  

F  
– Euclidean matrix norm of 

( )max
TF A Aλ=  

DF  
– dazing inverse of matrix F  

⇒  – follows 
 – such that 

Generally, the singular differential control systems with 
time delay can be written as: 

 ( )( ) ( ) , ( ), ( ), ( ) , 0
( ) ( ), 0

E t t t t t t t
t t t

τ
ϕ τ

= −
= − ≤ ≤

x f x x u
x

≥  (1) 

where  is a state vector,  is a control 

vector,  is a singular matrix, 

( ) nt ∈x R ( ) lt ∈u R
( ) n nE t ×∈

[ ]( , 0 , nC Cϕ τ∈ = − ℜ )  is an admissible initial state func-

tional, [ ]( , 0 , nC C τ= − R )
]

 is the Banach space of con-

tinuous functions mapping the interval [  into  
with topology of uniform convergence. 

, 0τ− nR

Some previous results 
Consider a linear continuous singular system with state 

delay, described by 

 ( ) ( )0 1 (E t A t A t )τ= + −x x x  (2a) 

with known compatible vector valued function of initial 
conditions 

 ( ) ( ), 0t t tϕ τ= − ≤ ≤x  (2b) 

where  and  are constant matrices of appropriate 
dimensions. 

0A 1A

Moreover it shall be assumed that rank . E r n= <

Definition 1. The matrix pair ( )0,E A is said to be regular 

if ( )0det sE A−  is not identically zero, Xu et al. (2002). 

Definition 2. The matrix pair ( )0,E A  is said to be 

impulse free if ( )0deg det( )sE A rang E− = , Xu et al. 
(2002). 

The linear continuous singular time delay system (2) 
may have an impulsive solution, however, the regularity 
and the absence of impulses of the matrix pair ( )0,E A  
ensure the existence and uniqueness of an impulse free 
solution to the system under consideration, which is defined 
in the following Lemma. 

Lemma 1. Suppose that the matrix pair  ( )0,E A  is 

regular and impulsive free and unique on [ )0,∞ , Xu et al 
(2002). 

Necessity for system stability investigation produces the 
need for establishing a proper stability definition. So, the 
following applies: 

Definition 3. 
a) Linear continuous singular time delay system, (2) is said 

to be regular and impulse free if the matrix pair ( )0,E A  
is regular and impulsive free. 

b) Linear continuous singular time delay system, (2), is said 
to be stable if for any 0ε >  there exists a scalar ( ) 0δ ε >  
such as that, for any compatible initial conditions ( )tϕ , 
satisfying condition: 

0
sup ( ) ( )

t
t

τ
ϕ δ ε

− ≤ ≤
≤ ,the solution 

 of system (2) satisfies ( )tx ( ) , 0t tε≤ ∀ ≥x . 

Moreover if lim ( ) 0
t

t
→∞

→x , system is said to be 

asymptotically stable, Xu et al (2002). 

General solution to continuous singular time delay 
state equitation 

Campbell’s (1980) approach  
Eq.(2) can be assumed to be in the form: 

 0 1( ) ( ) ( 1) ( )t A t A t t+ = − +x x x f , . (3) 0t ≥

To uniquely determine the solution of eq. (3) an arbitrary 
initial function 0( ) ( )t tϕ = =x x  must be specified defined 

on [ ]1,0− , so that . 0

Continuing in this manner, the given solution exists on 
(0) (0 )−=x x

[ ]0,n , eq.(3) has a unique solution on [ ], 1n n +  such as 

that ( ) ( )n n+ −=x x  and the solution exists on [ ]0, 1n + . 
Thus for eq.(3), a unique continuous solution exists on 
[ )1,− ∞  for any continuous specification of [ ]1,0− . 

Eq.(2) shall be considered under the assumption that 
0E Aλ + ∆  is invertible for some λ . The behaviour of 

eq.(2) is different from that of eq.(3). As expected, ( )tx  

can no longer be taken to be arbitrary on [ ]1,0− . If in 
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eq.(2), , the following associated homogeneous 
equation is obtained: 

0=f

 . (4) 0 1( ) ( ) ( 1)E t A t A t+ = −x x x

Clearly all solutions of eq.(2) are of the form 
( ) ( )p ht +x x t  where ( )p tx  is a solution of eq.(2) and 

( )h tx  is an arbitrary solution of eq.(4). 
It shall be proven that eq.(2) has always at least one initial 

condition for which eq.(2) has a solution on [ )1,− ∞ . All the 

consistent initial conditions of eq.(4) both for [ )1,− ∞  and 

[ )1,n−  time periods shall then be characterized. 

Let { }( ) , 1n t n ≥x  be two sequences of infinitely 

differentiable functions defined on [ ]0,1 .  e.g. 

(respectively ) should be thought of as 

( )n tx
( )n tf ( )tx  eq. 

(respectively ( )tf ) on [ ]1,n n− . 
As it will be demonstrated, infinite differentiability is a 

natural assumption since the existence of solutions often 
requires at least some components of , ( )tx ( )tf  to be 
infinitely differentiable at the integers. 

The system eq.(2), now becomes: 

 , , (5) 0 1 1( ) ( ) ( ) ( )n n n n tE t A t A t−+ = +x x x f 1n ≥

m

for given . 0

The characterization of those  such as that eq.(5) 

has a solution { }  such as that  is 
sought. 

x
0 ( )tx

0
r

l l=x 1(1) (0)l l+=x x

From Campbell (1980), for  follows: 1n ≥

   ( )

( ) ( )

0

0 0

ˆˆ

ˆ ˆˆ ˆ
1 1

0
1

( ) ( )
0 0 1 1

0

ˆ ˆ( ) (0)
ˆ ( ) ( )

ˆ ˆˆ ˆ ˆ( ) ( ) ( )

D

D D

E A t D
n n

t
D E A t E A

n n

k m mD D D
nn

m

t e E E

E e e A d

I E E EA A A t t

κ κ κ κ

−

− −
−

−

−
=

=

+ +

+ − − +

∫
∑

x x

x f

x f

 (6.a) 

where: 

 
1 1

0 0 0
1

1 0 1 0

ˆˆ ( ) , ( )
ˆˆ ( ) , ( ) ( ) (n n

E E A E A E A A0
1

,
)A E A A t E A t

λ λ
λ λ

− −

−

= + = +
= + = +f f−

 (6.b) 

and  is the index of matrix .  k
There is a need to manipulate this expression a lot, so let 

it be: 

Ê

 ˆ ˆDP E E= , , 0
ˆˆ DQ E A= 0

ˆˆ DH EA= − . (7) 

Note that P  is a projection and P , , Q H  all commute. 
Thus we have: 

 (

(

1 1
0
1

( ) ( )
0 1 1

0

( ) (0)
ˆˆ ( ) ( )

ˆ ˆ( ) ( ) ( )

Qt
n n

t
D Qt Q

n n

mk
mD m

nn
m

t e P

E e e A d)

)I P H A A t t

κ κ κ κ

−

− −
−

−

−
=

=

+ +

+ − +

∫
∑ x f

x x

x f  (8) 

Regardless what 1  is, letting 1  

x  co

n−x (0) (1)n nP P −=x x

makes ntinuous at n. The difficulty occurs with P
( )I P− x  at n. 

 

1)

That:

 1 0( ) (0) ( ) (I P I P− = −x x  (9) 

gives: 

 
( ) (1) ( )

ˆˆ ˆ (0) (0)
mk

mD m
nn

I P I P

H A A
−

−

− = − ×

× +∑
x

x f
 (10) 

It will be s

( )
0

1
( ) ( )

0 1 1
0m=

hown that the given ( )tf  and any 

{ }( )
0 (0) , 0m m ≥x  a solution can be obtaine  specifying 

x
n of ) .  

For , it follows that: 

 
( ) ( ) ( )

ˆˆ ˆ (0) (0)

n
mk

mD m
nn

I P t I P

H A A
−

−

− = − ×

× +∑
x

x f
 (11) 

Thus the requirement that: 

)

d by
( ) (1)m . 0

Take eq.(9) as the definitio 0( ) (1I P− x
1n ≥

( )
1

( ) ( )
0 1 1

0m=

 1( ) (0) ( ) (1n nI P I P −− = −x x , (12) 

fo , is 

 

r 2n ≥

( )
1

( ) ( )
0 1 21

0

ˆ ˆ( ) (0) (1)
mk

mD m
nn

m

I P H A A
−

−−
=

− − =∑ 0x x , (13) 

sin m ≥
From eq.(7), for :  

 

r

ce ( ) ( )
1

ˆ ˆ(0)m
n n−=f f , 0 , (1)m 2n ≥ . 

 1n ≥ , 1r ≥

( )

( )

( )

( )

1 1
0

1
1 ( ) ( )

1 1
0

1
( ) ( )

0 1 1
0

( ) ( ) (0)
ˆˆ ( ) ( ) ( )

ˆˆˆ ( ) ( )

ˆˆ ˆ( ) ( ) ( )

r r Qt
n n

t
D r Qt Q

n n

r
D r l l l

n n
l

mk
m rD m

nn
m

t Q e P

E Q e e A d

E Q A t t

I P H A A t t

κ κ κ

−

−
−

−
− −

−
=

−
+ +

−
=

= −

+ − +

+ +

+ − +

∫
∑

∑

x x

x f

x f

x f

κ

 (14) 

In particular: 

 

r

 (15)  

e , where  is given by 
eq

initely di rentiabl

( )

( )

( )
1 1

1
1 ( ) ( )

1 0 1
0

1
( ) ( )

0 1 00
0

(0) ( ) (0)

ˆˆˆ (0) (0)

ˆˆ ˆ( ) (0) (0)

r r

r
D r l l l

l
mk

m rD m

m

Q P

E Q A

I P H A A

−
− −

=
−

+ +

=

= −

+ +

+ − +

∑

∑

xx

x f

x f

Defin ( ) ( )
0 1(1) (0)r r=x x ( )

1 (0)rx
.(11) 
That an inf ffe e function on [ ]0,1  exists 

for arbitrary { }( ) (0)rx , { }( ) (1)rx  follows from mpbell  
(1 Lemm

Given this ll be computed and by construction 

 Ca
980), a 13.1. 
Let 0 ( )tx  be such a function.  
It will be shown that is a consistent initial condition.  

x wi 0 , 1x  
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0 0(1) (0)= x , 1m ≥ .  x
Suppose the re ex nx x  and: 

 

It will be shown that one can get a similar solution 
to

 is sat

duction hypothesis
(0)m m  so that 

th

eorem 1.

n that the ist ., 0 ,..

( )( )
1(1) (0)mm

r r+=x x , 0m ≥ , 1r n≤ − . (16)  

1n+

By eq.(16), eq.(13) isfied.  
The definition of 1nP +x  in terms of eq.(6), the infinite 

differentiability of f , and the in  eq.(12) 
applied to eq.(13) means th

x  can be obtained. 

 

at 1(1)n n+=x x
e induction is complete.  

( ) ( )

Thus the following theorem can be proved.  
Th  If ( )tf  is infinitely differentiable on [ )0,∞  

and { }( )
0 (0)mx  is an arbitrary sequence of num , and 

0 ( )tx  is any infinitely differentiable fu on [ ]0,1  with 

these derivatives at zero such that ( )
0 (1)mx  is given by 

eq.(15), then eq.(2) is

be

nction 

 consistent and has an infinitely 
di tia

le function on

rs

fferen ble solution. 
Let C  be the space of nC  - valued infinitely 

differentiab  [ ]0,1  with the family of semi-
orms: 

 

n
( )

0 1
m

r an integer n, let nC  be those initial conditions 
0 ( )x C

( ) sup ( )m

t
tρ

≤ ≤
=f f . (17)  

Fo y 
 in  for which a conti uous solution to eq.(4) exists 

on
t n

 [ ]0, n . 
Theorem 2. Each nC  is a closed subspa 1Cce of n nC +⊇ . 

The set of consistent initial condition Cs C
∞

= ∩  is an 

in
 e

nd 1 
sa

For example  consists of those which satisfy: 

 ˆ ˆ( ) (0) ( ) (1)
mk

mDI P H A A I P
−

− = −∑ x x , (18) 

while  consists of those  which also satisfy: 

 = . (19)  

That is: 

(1) ( ) (1)

ˆ ˆ ˆˆ( ) (0) 0

ˆ ˆ( ) (0)

m m

mk m
D D m l l

m l
k

l D l m

Q P

I P H A A E Q A

I P H A A

− −
− −

= =
−

+

⎛ ⎞
⎜ ⎟

− − +⎜ ⎟
⎜ ⎟
⎜ ⎟− × + + =
⎜ ⎟
⎜ ⎟
⎜ ⎟+ −

∑ ∑

∑

x x

x

x

 (20) 

evaluatio

at s infinite dimensional follows from Theorem 2. 

: 

t A t

 
1 nn∞ =

finite dimensional closed subspace of C . 
Proof. Using eq.(7) and q.(9) it can be seen that each  

C  consists of those ∈n 0 Cx  whose derivatives at 0 a
tisfying n relationships.  

1C

1
( )

0 1 00
0m=

2C 0x

( )
1

( ) ( )
0 1 10

0

ˆ ˆ( ) (1) (0)
mk

mD m

m

I P H A A
−

=

− +∑ 0x x

( )
0 0

1 1
1 ( )

0 1 1 0
0 0

1
( )

0 1 0
0l=

⎜ ⎟
⎝ ⎠

That C  is closed fol wsn lo  from the continuity of 
of derivatives in C .  n 

Th  nC  i

For

 0 ) ( )E t( ) (+ =x x f , (21) 

the assumption that ( )0E Aλ +  was invertible for some 
scalar λ  was equivalent to consistent initial conditions 
uniquely determining solutions.  

For the delay equation eq.(2), the ituation is more 
complicated. 

The existence of 

 s
 

λ  is e ivaqu lent to  and  uniquely 
de

 nx nf
termining 1n+x  but that is different from 0x  and f  

uniquely determining the nx .  
While the infinitely differentiable initial conditions were 

opriate space for the generalthe appr  problem on [ )0,∞ , if 

the point of interest is the existence on [ )0,n , then only 
1)(n k −  differentiability is needed.  

Also, in the context of a particular problem as low as 
1k −  times differentiability of some compon  f  and 

0x  will suffice. 
Of course, in gene

ents of

ral as many as )( 1n k −  times 
differentiability of C  on [ )0,n  and infinite differentiability 

on [ )0,∞  can be made. 
Similarly, the complication caused by several delays is 

l conditions must satisfy derivative 

d.
on 4.  be a square matrix, if there exists a 

trix  satisfying: 

that the consistent initia
conditions at points other than the end points. 

Wei’s (2004) approach 
Another approach to the general solution of singular 

differential systems with time delay, given in (2), is 
presente  

Definiti  Let E
ma  dE
1. d dEE E E=  
2. d d dE EE E=  
3. d d dE EE E=  

dE  the Drazin inverse matrix of ma rix E, is simply called 
D-inverse matrix. 

t

 is the index of the matrix , it is the smallest 
nonnegative integer which makes: 

ts Drazin inverse 
atrix  is existent and unique.  
If the Jordan normalized form of 

, (22) 

en: 

 T
⎝ ⎠

l E

1( ) ( )l lrank E rank E+ =  

true. 
Lemma 2. For any square matrix , i E

m
 is 

 dE
E

 11

1

0
0
JE T TJ

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

th
1

11 0d JE T
−

−⎛ ⎞= ⎜ ⎟ . (23) 
0 0

Here 0J  is a nilpotent matrix, 1J  and T are invertible 
matrices. 
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Consider system 

( ) ( ) ( )Ex t Ax t Bx t τ= + − , 0t ≥ , 

 ( ) ( )x t tϕ= , 0tτ− ≤ ≤  (24) 

nd system a

( ) ( ) ( ) ( ) ( )Ex t Ax t Bx t Du t f tτ= + − + + , 

 t ≥ 0t0 , ( ) 0x t = , τ− ≤ ≤ . (25) 

It is not difficult to oll g result. 
Lemma 3. If 

prove  the f owin
ˆ( ), ( )x t x t  are respectively the solutions of 

(24) and (25), then ˆ( ) ( ) ( )x t x t x t= +  is the solution of (22). 

Definition 5. Let ( ) n nX t ×∈ , ( )X t  is called the first 
lass foundation solution of singular differe

with delay, if it satisfies the matrix equation: 

AX t B t −

Definition 6. Let  is called the second 
class foundation solution of singular differential systems 

ith time delay, if it satisfies matrix equation

0,

,
0,

d
EY t AY t BY t

I EE t t
τ

δ
⎧ = + −
⎪ + − ≥⎪

⎩

(27) 

here 

c ntial systems 

 
( ) ), 0,

, 0,( )
0, 0,

d
EX t X t

EE tX t
t

τ

τ

⎧ = + ≥
⎪

⎧⎨ == ⎨⎪ − ≤ ≤⎩⎩

. (26) 
( ) (

 ( ) n nY t ×∈ , ( )Y t

w s: 

 ⎨
⎪

 

( ) ( ) ( )
( ) ( ),

, 0( )
0,

dI EE tY t
tτ

⎧ − ==⎪ ⎨ − ≤ ≤⎩

w ( )tδ  is a delta function, or impulse
Lemma 3. For a delta function 

 function. 
( )tδ , there exists 

 ) . (28) 

Proof. Define : 

0
( ) ( ) (

t
t s f s ds f tδ − =∫

 f g∗

 
0

( ) ( )
t

f g g t s f s ds , (29) ∗ = −∫
th n 

 ) . (30) 

It also shows that 

e convolution formula is know

( ) ( ) (L f g L f L g∗ =

( ) 1L δ = . 
Then it follows that: 

   , (31) 

That is: 

)t s f s ds f tδ − =∫ . 

 d . (33) 

Proof. Let I be an identity matrix with appropriate 
dimension, and 

0

0
0

T
J

−⎞
⎜ ⎟
⎝ ⎠

. (34) 

from Lemma 4.31, it follows: 

T⎜ ⎟
⎝ ⎠

For 

( ) ( )
0

( ) ( ) ( ) ( ( ) ( ( ))
t

L t s f s ds L t L f t L f tδ δ⎛ ⎞− = =⎜ ⎟
⎝ ⎠∫

 (32) 
0

( ) ( ) (
t

Lemma 4. For any square matrix E, one can have:  
1( )( ) ( ( ))d dE I I EE I E I EE I EE−+ − × + − = −

 
1

1JE T
−⎛= 1

 
1

11d JE T
−

−⎛ ⎞= . (35) 0
0 0

0J  is a nilpotent matrix, 0J I+  is invertible.  

1

1

0
0

1
1 11 1

0

1 1

0 0 0
0 0 0

0 0 0
0 0 0 0

d I J JI EE T T T T T TI J
I IT T T T T T

I I

−
− − −

− − −

⎛ ⎞ ⎛ ⎞⎛ ⎞− = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

(36) 

)( ) 0 0
0 0
0

d J II EE T T T TJ I I

T TJ I

− −

−

+⎛ ⎞ ⎛ ⎞+ − = ⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠
⎛ ⎞= ⎜ ⎟+⎝ ⎠

. (37) 

 
0

0 0
0

0 0 0
0

( )

d

d d

I EE T TI
IT T T TI J I

I EE I E

−

−
− −

 
(E I 1 11

0

1

0

0 0 0

( )

1

1
1 1

00 J
1

( ) ( )E I I EE
−

⎛ ⎞− = ⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞= ⎜ ⎟+ +⎠ ⎝ ⎠
− +

, (38) ⎜ ⎟
⎝

= + −

i.e. is (38) is true. 
Definition 7. If det( ) 0E Aλ − ≠ , the matrix pair ( , )E A  

is called lar. If ( , ) regu A E  is regular, the system (2) is 
called regular. 

thod, n
( are 

solvable. 
Theorem 8. Suppose matrix pair  is regular,

Remark 1. Using the standard me it can be prove  
that if ( , )E A  is regular, systems (2), 6) and (7) 

( , )E A  ( )x t  
is the solution of (24), then provided that: 

t τ≥ + , 

 
( )

( )

1

0

1

( ) ( ) ( ) ( ) (0)

( )
( )

( ) ( )

d

d

d

x t X t Y t I E I EE E

X t E B
d

Y t I E I EE Bτ

ϕ

θ τ
ϕ θ θ

θ τ

−

−
−

⎡ ⎤= + + −⎢ ⎥⎣ ⎦
⎡ ⎤− − +
⎢ ⎥
+ − − + −⎢ ⎥⎣ ⎦

∫
, (39) 

when: 

+

0 t τ≤ ≤ , 

( ) 1
( )

( ) ( )d

d
Y t I E I EE

τ

1( ) ( ) ( )( ( )) (0)

( )

d

d
t

x t X t Y t I E I EE E

X t E B

B

τ

ϕ

θ τ
ϕ θ θ

θ τ
− −

+
⎢ ⎥+ − − + −⎣

∫

There ( )

−

−

⎡ ⎤= + + −⎣ ⎦

⎡ ⎤− − +⎢ ⎥
⎢ ⎥

⎦

. (40) 

X t  is the first class of foundation solution of 

 

sin

ove Theorem 8, the hom neou rential 
ith delay (24) can be partitioned into two classes 

of systems: 

gular differential systems with delay, ( )Y t  is the second 
class of foundation solution of singular differential systems 
with delay. 

To pr
systems w

oge s diffe
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( ) ( ) ( )Ex t Ax t Bx t τ= + − ,   ,t τ≥  

 )dEx t Ax t EE B t( ) ( ) (ϕ τ= + − , 0 ,t τ≤ ≤  (41) 

( ) ( )dx t EE tϕ= ,  0tτ− ≤ ≤   

and: 

 ( ) ( ) ( )Ex t Ax t Bx t τ= + − ,  ,t τ≥   

 )dEx t Ax t I EE B t( ) ( ) ( ) (ϕ τ= + − − , 0 ,t τ≤ ≤  (42) 

( ) ( ) ( )dx t I tEE ϕ= − ,  0tτ− ≤ ≤ . 

Lemma 5. If 1 2( ), ( )x t x t  is respectively the solution of 
(41) and (42), then 1 2( ) ( ) ( )x t x t x= +  the solution of 
(24). 

t  is

Lemma 6. Suppose matrix pair ( , )A E  is regular, then 
the solution of (41) can be written as: 

 

( ) (0)

( ) ( ) , ,

( )
( ) (0)

d

X t

X t E B d t

x t
X t

τ

ϕ

θ τ ϕ θ θ τ

ϕ

0

1

0
( ) ( ) ,0 .dX t E B d t

τ
θ ϕ θ τ θ τ+ − − ≤ ≤

⎩ ∫

−

+⎧
⎪
+ − − ≥⎪
⎪

= ⎨
⎪ +
⎪
⎪

∫
. (43) 

There ( )X t  is first class of foundation solution of 
singular differential systems with delay. 

Proof. Since ( )

 the 

X t  is the first class of foundation 
so ,lution of singular differential systems with delay  ( )X t  
satisfies matrix equations (26). 

By taking Laplace transformation for (26), then: 

 
−

, (44) 

 

t

t t

t

t

e AX t BX t dt

A e X t dt B e X t dt

ALX t B e X t dt

0 0

0

( ( )) ( )

( ) (0) ( )

t t

t d

e EX t dt E e X t dt

E e X t dt EX ELX t EEE

λ λ

λλ λ

∞ ∞
− −

∞
−

=

= − =

∫ ∫
∫

0

0 0

0

( ( ) ( ))

( ) ( )

( ) ( )

( ) ( ) ( ) ( )ALX t Be e X t dt A Be

λ

λ λ

λ λτ

τ

λτ λ λτ

τ

τ

∞
−

∞ ∞
− −

∞
− −

−
∞

− − −

+ − =

= + −

= +

= + = +

∫
∫ ∫

∫
∫

.(45) 

 )ELX t

Because  is regular, for 

LX t

( ) ( ( )dEEE A Be LX tλτλ −− = + . (46) 

( , )E A λ  large enough, 

E A Be λτλ −− −  is invertible, the following is obtained: 

 . (47) 

If   is the solution of (41), then: 

1 t

τ

d

{ } ( )( )L X t E A Be EEEλτλ −= − − d

x t1( )

 , (48) 
1

0 0

1 1 1
0

( ( )) ( )

( ) (0) ( ) (0)

t t

t d

e Ex t dt E e x t dt

E e x t dt Ex ELx t EEE

λ λ

λλ ϕ

∞ ∞
− −

∞
−

= =

− = −

∫ ∫
∫

and: 

   (49) 

{ }

1 1
0 0

1
0 0

1 1

1 1
0 0

1
0

( ( )) ( ( )) ( ( ))

( ( )) ( )

( ) ( )

( ) ( )

( ) ( )

t t t

t d t

t t

t t

d t

e Ex t dt e Ex t dt e Ex t d

A e Ex t dt EE Be t dt

A e x t dt B e x t dt

A e x t dt Be e x t dt

EE Be t dt AL x t Be

τ
λ λ λ

τ
τ τ

λ λ

λ λ

τ τ

λ λτ λ

τ
λ

ϕ τ

τ

τ

ϕ τ

∞ ∞
− − −

− −

∞ ∞
− −

∞ ∞
− − −

− −

= +

= + −

+ + −

= + −

+ − = +

∫ ∫ ∫
∫ ∫
∫ ∫
∫ ∫
∫ { }1

0

( )

( )d t

L x t

EE Be t dt

λτ

τ
λ ϕ τ−+ −∫

That is: 

  (50) 
1

1

0

( ) ( ( ))

(0) ( )d d t

E A Be L x t

EEE EE Be t dt

λτ

τ
λ

λ

ϕ ϕ

− −

−

− − =

= + −∫
Since d dE EE E= , from (47) it can be seen that: 

 

1
1

1

0

0

( ( )) ( ) (0)

( ) (

( ( )) (0) ( ( )) ( )

d

d d t

d s

L x t E A Be EEE

)E A Be EEE E Be t dt

L X t L X t E Be s ds

λτ

τ
λτ λ

τ
λ

λ ϕ

λ ϕ τ

ϕ ϕ

− −

− − −

−

= − − +

+ − − −

= + −

∫
∫ τ

. (51) 

Defining auxiliary function [ ]: [ , ) 0, 1 :τ℘ − ∞ →  

 , (52) {0, 0,( ) 1, 0,
tt t
≥℘ =
<

the following is obtained: 

 

0

0

0

0

( ( )) ( )

( ( )) ( )

( ( )) ( ) ( )

( ( )) ( ( ) ( ))

( ) ( ) ( )

d s

s d

s d

d

t
d

L X t E Be s ds

L X t e E B t dt

L X t e E B t t dt

L X t L E B t t

L X t E B d

τ
λ

τ
λ

λ

ϕ τ

ϕ τ

ϕ τ τ

ϕ τ τ

θ ϕ θ τ θ τ θ

−

−

∞
−

− =

= −

= − ℘

= − ℘ −
⎛ ⎞= − − ℘ −⎜ ⎟
⎝ ⎠

∫
∫
∫

∫

− . (53) 

Then: 

 1
0

( ) ( ) (0) ( ) ( ) ( )
t

dx t X t X t E B dϕ θ ϕ θ τ ω θ τ= + − − −∫ θ . (54) 

When: t τ≥ , 

 
0

1( ) ( ) (0) ( ) ( )dx t X t X t E B d
τ

ϕ θ τ ϕ θ θ
−

= + − −∫ , (55) 

 
 
 
 



20 D.LJ.DEBELJKOVIĆ: ASYMPTOTIC STABILITY OF SINGULAR CONTINUOUS TIME DELAYED SYSTEM  

and, when 0 ,t τ≤ ≤   

 1
0

( ) ( ) (0) ( ) ( )
t

dx t X t X t E B dϕ θ ϕ θ τ= + − −∫ θ . (56) 

The proof of Theorem 8 is completed. 
Lemma 7. Suppose matrix couple ( , )A E  is 

,

regular, then 
the solution of (42) can be written as: 

  
( )

( )

1

0 1

2
1

1

0

( )( ( )) (0) ,

( ) ( ( )

( )
( )( ( )) (0) 0

( ) ( ( ) ,

d

d

d

t
d

Y t I E I EE t

Y t I E I EE B d

x t
Y t I E I EE t

Y t I E I EE B d

τ

ϕ τ

θ τ ϕ θ θ

ϕ τ

θ ϕ θ τ θ

−

−

−

−

−

⎧ + − ≥
⎪
⎪+ − − + −
⎪⎪= ⎨
⎪ + − ≤ ≤
⎪
⎪+ − + − −
⎪⎩

∫

∫

 (57) 

There  is the second class of foundation solution of 
singular differential systems with delay. 

( )Y t

Proof. Since  is the second class of foundation 
solution of singular differential systems with delay,  
satisfies matrix equations (27).  

( )Y t
( )Y t

By taking Laplace transformation for (27), the following 
is obtained: 

 , (58) 

0 0

0

( ( )) ( )

( ) (0)

( ( )) ( )

t t

t

d

e EY t dt E e Y t dt

E e Y t dt EY

EL X t E I EE

λ λ

λλ

λ

∞ ∞
− −

∞
−

=

= −

= − −

∫ ∫
∫

or: 

 { }

{ }

{ }

0 0

0

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

t t

t d

t d

d

dA e Y t dt B e Y t dt I EE

AL Y t B e Y t dt I EE

AL Y t Be e Y t dt I EE

A Be L Y t I EE

λ λ λτ

λ λτ

τ

λτ λ

λτ

∞ ∞
− − −

∞
− −

−
∞

− −

−

+ +

= + + −

= + + −

= + −

∫ ∫
∫
∫

−

 (59) 

That is: 

    . (60) { } { }( ) ( ) ( ) ( ) ( )d dEL Y t E I EE ABe L Y t I EEλτλ −− − = + −

Because  is regular, for ( , )E A λ  large enough, 

E A Be λτλ −− −  is invertible, then:  

 . (61) { } 1( ) ( ) ( )( )dL Y t E A Be I E I EEλτλ − −= − − × + −

If 2 ( )x t  is the solution of (10), then: 

 , (62) 

{ }( )

2 2
0 0

2 2
0

2

( ( )) ( )

( ) (0)

( ) ( ) (0)

t t

t

d

e Ex t dt E e x t dt

E e x t dt Ex

E L x t E I EE

λ λ

λ

λ

∞ ∞
− −

∞
−

=

= −

= − −

∫ ∫
∫

ϕ

and: 

  

2 2
0 0

2 2
0

2
0

2 2
0

2
0 0

( ( )) ( ( ))

( ( )) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

t t

t t

d t t

t t

t d t

e Ex t dt e Ex t dt

e Ex t dt A e x t dt

I EE Be t dt A e x t dt

B e x t dt A e x t dt

Be e x t dt I EE Be t dt

τ
λ λ

τ
λ λ

τ
τ

λ λ

τ

λ λ

τ
τ

λτ λ λ

ϕ τ

τ

ϕ τ

∞
− −

∞
− −

∞
− −

∞ ∞
− −

∞
− − −

=

+ =

+ − − +

+ − =

+ + −

∫ ∫
∫ ∫
∫ ∫
∫ ∫
∫ ∫ −

(0)

)

. (63) 

That is: 

 . (64) 
{ }1

2

0

( ) ( ) ( )

( ) ( )

d

d t

E A Be L x t I EE E

I EE Be t dt

λτ

τ
λ

λ ϕ

ϕ τ

− −

−

− − = −

+ − −∫
Then:  

 
{ } 1

2

1

0

( ) ( )
( ) (0)

( )
( ) (

d

d t

L x t E A Be
I EE E

E A Be
I EE Be t dt

λτ

λττ

λ

λ
ϕ

λ
ϕ τ

− −

− −

−

= − − ×
× −

− − ×+
× − −∫

. (65) 

From Lemma 4, follows: 

 

{ } 1
2

1

1

1
0

( ) ( )
( )( )
( ( )) (0)

( ) ( )(
( ( )) ( )

d

d

d

d t

L x t E A Be
E I I EE
I E I EE E

E A Be E I I EE )
I E I EE Be t dt

λτ

λττ

λ

λ

ϕ

λ
ϕ τ

− −

−

− −

− −

= − − ×
× + − ×
× + − +

− − + −+
× + − −∫ ×

. (66) 

By (61), it is obvious: 

 
{ } { }

{ }

2
1

1

0

( ) ( )
( ( )) (0)

( ) ( ( ))
( )

d

d

L x t L Y t
I E I EE E

L Y t I E I EE
Be d

τ

λθ

ϕ

ϕ θ τ θ

−

−

−

= ×
× + −

+ −
+

× −∫ ×
, (67) 

By using auxiliary function [ ]: [ ,0) 0, 1τ℘ − →  as 
above, then: 

 

{ }

{ }

{ }

{ }

1

0

1

0

1

0

1

1

0

( ) ( ( )) ( )

( ( ))( )
( )

( ( ))( )
( ) ( )

( ) (( ( )) ( ) ( )

( ) ( ( ))
( ) ( )

d

d

d

d

t d

L Y t I E I EE Be d

e I E I EEL Y t
B d

e I E I EEL Y t
B d

L Y t I E I EE B t t

Y t e I E I EEL
B d

τ
λθ

τ λθ

λθ

λθ

ϕ θ τ θ

ϕ θ τ θ

ϕ θ τ θ τ θ

ϕ τ τ

θ
ϕ θ τ θ τ θ

− −

− −

∞ − −

−

− −

+ − −

+ − ×=
× −

+ − ×=
× − ℘ −

= + − × − ℘ −

⎧ − + − ×= ⎨ × − ℘ −

∫
∫
∫

∫ ⎫
⎬

⎩ ⎭

 (68) 

Then: 

 
( ) 1

2
1

0

( ) ( ) ( (0)

( )( ( ))
( ) ( )

d

t d

x t Y t I E I EE E

Y t I E I EE
B d

ϕ

θ
ϕ θ τ θ τ θ

−

−

= + −

− + −+
× − ℘ −∫ × . (69) 
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When t τ≥ : 

 . (70) 
1

2

0 1

( ) ( )( ( )) (0)

( )( ( ))
( )

d

d

x t Y t I E I EE E

Y t I E I EE
B dτ

ϕ

θ τ
ϕ θ θ

−

−

−

= + −

− − + − ×+
×∫

when 0 t τ≤ ≤ , 

 
( )
( )

1
2

1

0

( ) ( ) ( (0)

( ) ( ) ( )

d

t
d

x t Y t I E I EE E

Y t I E I EE B d

ϕ

θ ϕ θ τ θ

−

−

= + −

+ − + − −∫
. (71) 

This completes the proof of Lemma 7. 
Theorem 9. Suppose matrix pair ( , )A E  is regular, then 

the solution of (24) can be written as: 

 
( )

(
( )

0
1

0

ˆ( ) ( ) ( ) ( )

( ) (
( ) ( )

t
d

t d )
x t X t E Du f d

Y t I E I EE
Du f d

θ θ θ

θ
θ θ θ

−

= − +

− + − ×+
× +

∫
∫

θ
. (72) 

There ( )X t  is the first class of foundation solution of 
singular differential systems with delay,  is the second 
class of foundation solution of singular differential systems 
with delay. 

( )Y t

From Lemma 3, Theorem 8 and Theorem 9, the 
following is obtained: 

Theorem 10. Suppose matrix pair ( , )A E  is regular, 
( )x t  is the solution of (25), when: 

t τ≥ , 

 

( )( )

( )
( )( )

( )

1

0

1

1

0

( ) ( ) ( )( (0)

( )
( )

( )(

( ) ( ) (

( ) ( )

d

d

d

dt

x t X t Y t I E I EE E

X t E B
d

Y t I E I EE B

X t E Y t I E I EE

Du f d

τ

ϕ

θ τ

d

ϕ θ θ
θ τ

θ θ

θ θ θ

−

−
−

−

= + + −

⎛ − − +
+ ⎜⎜+ − − + −⎝

− + − + − ×
+

× +

∫

∫

⎞
⎟⎟
⎠

 (73) 

when: 0 t τ≤ ≤ , 

 

( )( )

( )

( )

1

1
0

1
0

( ) ( ) ( ) ( (0)

( )
( )

( ) (

( ) ( ) ( )
( )( ( ))

d

dt

d

dt

d

x t X t Y t I E I EE E

X t E B
d

Y t I E I EE B

X t E Du f d
Y t I E I EE

ϕ

θ
ϕ θ τ θ

θ

θ θ θ θ
θ

−

−

−

= + + −

⎛ ⎞− +
+ −⎜ ⎟⎜ ⎟+ − + −⎝ ⎠

⎛ ⎞− ++ +⎜ ⎟+ − + −⎝ ⎠

∫

∫

. (74) 

There ( )X t  is the first class of foundation solution of si-
ngular differential systems with delay,  is the second 
class of foundation solution of singular differential systems 
with delay. 

( )Y t

The main results 
Consider the case when the subspace of consistent initial 

conditions for singular time delay and singular nondelay 
system coincide. 

Owens-Debelković's approach 
Theorem 11. Suppose that the matrix pair  is 

regular  with the system matrix 

( )0,E A

0A  being non-singular, i.e. 

0det 0A ≠ . 
The system (2) is asymptotically stable, independent of 

delay, if there exists a positive definite matrix P , being the 
solution of Lyapunov’s matrix equation 

  (75) ( )0 0 2T TA PE E PA S Q+ = − + ,

with matrices 0TQ Q= >  and , such that: TS S=

 , (76) ( ) {( ) ( ) 0, ( ) \ 0T
k

t S Q t t W ∗+ > ∀ ∈x x x }

is a positive definite quadratic form on { }\ 0
k

W ∗ , k
W ∗ being 

the subspace of consistent initial conditions1 , and if the 
following condition is satisfied: 

 
1
2

1
12

1 min max
TA Q Q Eσ σ

−−⎛ ⎞ ⎛< ⎜⎜ ⎟ ⎝ ⎠⎝ ⎠
P ⎞⎟ , (77) 

Here max ( )σ ⋅  and min ( )σ ⋅  are maximum and minimum 
singular values of matrix ( )⋅ , respectively. 

Proof. Let the following function be considered: 

 , (78) ( )( ) ( ) ( ) ( ) ( )
t

T T T

t

V t t E PE t Q d
τ

κ κ
−

= + ∫x x x x x κ

Note that and Lemma A12 and Theorem A1 indicates that 

 , (79) ( )( ) ( ) ( )T TV t t E PE t=x x x

is a positive quadratic form on  , and it is obvious that 

all smooth solutions  evolve in , so 
k

W ∗

( )tx k
W ∗ ( )( )V tx can 

be used as a Lyapunov function for the system under 
consideration, Owens, Debelković (1985). 

It will be shown that the same argument can be used to 
declare the same property of another quadratic form present 
in (78). 

Clearly, using the equation of motion of system, given 
(2), the following applies: 

 , (80) 
( ) ( )

( )
0 0

1

( ) ( ) ( )
2 ( ) ( )

( ) ( )

T T T

T T

T

V t t A PE E PA Q t
t E PA t

t Q t
τ

τ τ

= + +

+ −

− − −

x x x
x x

x x

and after some manipulations, yields to: 

 
( ) ( )

( )
0 0

1

( ) ( ) 2 2 ( )
2 ( ) - ( ) ( ) ( ) ( )

( ) ( )

T T T

T T T T

T

V t t A PE E PA Q S t
t E PA t Q t t S t

t Q tτ τ

= + + +

+ −

− − −

x x
x x x
x x x

x x
. (81) 

From (77) and the fact that the choice of matrix , can be 
done, such that: 

S

 , (82) { }( ) ( ) 0, ( ) \ 0T
kt S t t W ∗≥ ∀ ∈x x x

the following result is obtained: 

                                                           
1) 

k
W ∗  subspace of consistent initial conditions,Owens,Debeljković (1985). 

2) See Apendix A. 
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 ( ) ( )1( ) 2 ( ) ( )
( ) ( ) ( ) ( )

T T

T T

V t t E PA t
t Q t t Q t

τ
τ τ

∆ ≤ −

− − − −

x x x
x x x x

, (83)  

and based on the well known inequality3: 
1 1
2 2

1 1

1
1 1

2 ( ) ( ) 2 ( ) ( )

( ) ( ) ( ) ( )

T T T T

T T T T T

t E PA t t E PA Q Q t

t E PA Q A PE t t Q t

τ τ

τ τ

−

−

⎛ ⎞− = −⎜ ⎟
⎝ ⎠

≤ + −

x x x x

x x x x −
, (84) 

and by substituting into (83), it yields: 

  , (85) ( ) 1
1 1( ) ( ) ( ) ( ) ( )T T T TV t t Q t t E PA Q A PE t−≤ − +x x x x x

or: 

 ( ) 1 2 1 2( ) ( ) ( )TV t t Q Q t≤ − Γx x x , (86) 

with matrix Γ  defined by: 

 ( 1 2 1 2 1 2 1 2
1 1

T TI Q E PA Q Q A PEQ− − −Γ = − )−

)

. (87) 

( ( )V tx  is a negative definite form if: 

 ( )1 2 1 2 1 2 1 1 2
max 1 11 0T TQ E PA Q Q A PEQλ − − − − −− > , (88) 

which is satisfied if:  

 (2 1 2 1 2
max 11 0TQ E PA Qσ − −− ) > . (89) 

Using the properties of the singular matrix values, Amir-
Moez (1956), the condition (17) holds if: 

 ( ) ( )2 1 2 2 1 2
max max 11 0TQ E P A Qσ σ−− >− , (100) 

which is satisfied if: 

 
( )
( )

2 2 1 2
1 max

1 22
min

1 0
TA Q E Pσ

σ

−

−
Ω

> , (101) 

what completes the proof. 
Remark 2. Equations (75-76) are modified forms taken 

from Owens, Debelković (1985). 
Remark 3. If the system under consideration is just an 

ordinary time delay, e.g.  the result is identical to 
that presented in Tissir, Hmamed (1996).  

,E I=

Remark 4. Let first the case when the time delay is 
absent be discussed. 

Then the singular (weak) Lyapunov’s matrix equation 
(75) is naturally the generalization of classical Lyapunov’s 
theory. 

In particular 
If E is non-singular matrix, then the system is 

asymptotically stable if and only if 1
0A E A−=  Hurwitz 

matrix. 
Equation (75) can be written in the form: 

 T T TA E PE E PEA Q+ = −

                                                          

, (102) 

with matrix Q being symmetric and a positive definite 
form, in the whole state space, since then  

Wk* = (Eℜ k*) = .  n

 
>3)  12 ( ) ( ) ( ) ( ) ( ) ( ), 0T T Tt t t P t t P t P−≤ +u v u u v v

In those circumstances TE PE  is a Lyapunov’s function 
for the system. 

The matrix 0A  is by necessity non-singular and hence 
the system has the form 

 0 ( ) ( ) , (0) .E t t 0= =x x x x  (103) 

Then for this system to be stable (75) it must also hold 
and have familiar Lyapunov’s structure 

0 0
TE P PE Q+ = − , (104) 

where Q is a symmetric matrix but it is only required to be 
a positive definite form on Wk*. 

Remark 5. There is no need for the system under 
consideration to posses properties given in Definition 2, 
since this is obviously guaranteed by demand that all 
smooth solutions  evolve in . ( )tx k

W ∗

Example 1. Consider the linear continuous singular time 
delay system with matrices as follows: 

0 1

1 0 0
0 1 0 ,
0 0 0

1 0 0 0,1 0 0
0 1 0 , 0 0 0
0 1 1 0 0 0

E

A A

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢= − = ⎥
⎢ ⎥ ⎢− − ⎥⎣ ⎦ ⎣ ⎦

E

 

Based on the above presented procedure the following 
data, can easily be found, Debeljković et. al. (2006): 

1
0 | 0

ˆ ( )E E A λλ −
== + ⋅  

1
0

1 0 0
ˆ 0 1 0 ,

0 1 0

1 0 0
ˆ 0 1 0

0 1 0
D

E A E

E

−
−⎡ ⎤
⎢ ⎥= = −
⎢ ⎥⎣ ⎦

−⎡ ⎤
⎢ ⎥= −
⎢ ⎥⎣ ⎦

⇒

. 

( ) ( ) 0

0

ˆ ˆ ˆ ˆ

0 0 0
0 0 0 0,
0 1 1

D DI EE I EE− = −

⎡ ⎤
⎢ ⎥= = ⇒
⎢ ⎥⎣ ⎦

x

x
  

( )
{ }1 2 2

ˆ ˆ

: , ,

D
kI EE W

3x x x x
∗− =

= ∈ ∈ = −x
. 

0 0

0

det 0, det ( ) 0,
2, deg det( ) 2.

A E
rang E sE A

λ λ≠ ∃ − ≠

= − =

A
 

It can be adopted that: 

1 0 0
0 1 0 0,
0 0 1

TQ Q
⎡ ⎤
⎢ ⎥= = >
⎢ ⎥⎣ ⎦
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0 1 1
1 0 1 ,
1 1 1

1 1 1
1 1 1
1 1 0

TS S

S Q

⎡ ⎤
⎢ ⎥= = −
⎢ ⎥− −⎣ ⎦

⎡ ⎤
⎢ ⎥+ = − ⇒
⎢ ⎥−⎣ ⎦

 

[ ]

( )
( )( )

{ }

2 3

2 3

1

1 2 3 2

3
2

1 2 1 3 2 3 3

2 2
1 2 3 3 3

2
3

0 1 1
( ) ( ) 1 0 1

1 1 1
2 2 2

2 2

0, ( ) \ 0

T

x x

x x

k

x
t S t x x x x

x
x x x x x x x

x x x x x

x t W ∗

=−

=−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= −
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

= + − −

= + + −

= > ∀ ∈

x x

x

. 

[ ]

( )
{ }

2 3

1

1 2 3 2

3

2 2 2
1 2 3

2 2
1 2

1 0 0
( ) ( ) 0 1 0

0 0 1

2 0, ( ) \ 0

T

x x

k

x
t Q t x x x x

x

x x x

x x t W ∗

=−

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

= + +

= + > ∀ ∈

x x

x

 

Moreover: 
2 2 2
1 2 3( ) ( ) 0, ( )T t Q t x x x t W= + + > ∀ ∈x x x . 

det 1 0Q = ≠ , 

and: 

( ) [ ]

( )( )
{ }
2 3

1

1 2 3 2

3

2 2 2
1 2 2 3 2

2 2
1 2

1 1 1
( ) ( ) 1 1 1

1 1 0

2 2

3 0, ( ) \ 0

T

x x

k

x
t S Q t x x x x

x

x x x x x

x x t W ∗

=−

⎡ ⎤ ⎡
⎢ ⎥ ⎢+ = −
⎢ ⎥ ⎢−⎣ ⎦ ⎣

= + + + +

= + > ∀ ∈

x x

x

⎤
⎥
⎥⎦

⎤
⎥
⎥⎦

 

Also it can be computed: 

11 12 13

12 22 23

13 23 33

11 12 13

12 22 23

13 23 33

1 0 0 1 0 0
0 1 0 0 1 0
0 1 1 0 0 0

1 0 0 1 0 0 1 1 1
0 1 0 0 1 1 2 1 1 1
0 0 0 0 0 1 1 1 0

p p p
p p p
p p p

p p p
p p p
p p p

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢+ − =− −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣

 

( )3 33

33

33

1 0 2
0 3 2 , 0,
2 2

16 03
T

P
p

p P P

⎡ ⎤
⎢ ⎥= − ⇒ ∆ >
⎢ ⎥−⎣ ⎦

> ⇒ = >

p ⇒

>

. 

Generally it can be adopted: 

1 0 2
0 3 2 0
2 2 6

TP P
⎡ ⎤
⎢ ⎥= − =
⎢ ⎥−⎣ ⎦

. 

Finally, condition (76) has to be checked: 

{ } { }1 0,10 1, 1, 1 ,A Qσ= =  

1 1
2 2

1
21

12
2

1 0 0 1 0 0
0 1 0 , 0 1 0 ,
0 0 1 0 0 1

1 1
3 2

0 0 0

T

Q Q

Q E P

−

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢= = ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣

− −⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥⎣ ⎦

⎦
 

1 1
2 2

min max1 , 3.82TQ Q E Pσ σ
−⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
, 

1
2

1
2

min

1

max

0.10 0.26
T

Q
A

Q E P

σ

σ
−

⎛ ⎞
⎜ ⎟
⎝ ⎠= < <

⎛ ⎞
⎜ ⎟
⎝ ⎠

, 

so, the system under consideration is asymptotically stable. 
For the sake of further investigation let, for the previous 
case, the situation when E I=  be adopted. 

Then it can be calculated: 

{ } { } { }0 1 2 3 max, , 1, 1, 1 , 1.Aσ λ λ λ λ= = − − − = −  

( ) ( )0 max 0 max 0 0
TA A Aσ λ= = A

}

,  

( ) { } {

( ) ( )

0 0

0 0 1 2 3

0 max 0 0

2 0 0
0 2 1 ,
0 1 2

, , 1, 2, 3

1 1 .2 2

T

T
i

T

A A

A A

A A A

λ λ λ λ

µ λ

−⎡ ⎤
⎢ ⎥+ = − −
⎢ ⎥− −⎣ ⎦

+ = = − − −

= + = −

,  

Following Mori et al. (1981):  

( )0 1 0, 0.5 0.10 0.4 0.A Aµ + < − + = − <  

the asymptotic stability of the  non-delay system under 
consideration is confirmed. 

Moreover: 

[ ]

( ) { }
2 3

1

1 2 3 2

3

2 2
1 2

1 0 0
( ) ( ) 0 3 0

0 0 0

3 0, ( ) \

T T

kx x
0

x
t E PE t x x x x

x

x x t W ∗=−

⎡ ⎤ ⎡
⎢ ⎥ ⎢=
⎢ ⎥ ⎢⎣ ⎦ ⎣

= + > ∀ ∈

x x

x

⎤
⎥
⎥⎦  

so ( )( )V tx  can be used as a Lyapunov’s  function for the 
system (2). 

Pandolffi approach 
Our result is stated as follows: 
Theorem 12. Suppose that the system matrix 0A  is non-

singular, i.e. de 0t 0A ≠ . 
Then system (2) with the known compatible vector 

valued function of initial conditions can be considered and 
it can be assumed that . 0rank E r n= <
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Matrix  is defined in the following way  0E 1
0 0E A E−=

The system (2) is asymptotically stable, independent of 
delay, if  

 ( ) (1 2 1 1 2
1 min max 0

T )A Q Q Eσ σ − −< P

)

, (105) 

and if there exists: 
(i)  matrix , being the solution of Lyapunov’s 
matrix: 

(n n× P

 , (106)  0 0 2TE P PE IΩ+ = −

with the following properties: 

a) TP P=   (107a) 

b)   (107b) ( ) 0, ( )P t t=q q ∈Λ

∈Ω

)

c) , (107c) ( ) ( ) 0, ( ) 0, ( )T t P t t t> ≠q q q q

where: 

 ( DI EEΩ = − , (108) 

 ( )DEEΛ = , (109) 

with matrix  representing generalized operator on  
and identity matrix on subspace Ω  and zero operator on 
subspace  and matrix  being any positive definite 
matrix. 

IΩ n

Λ Q

Moreover matrix P  is a symmetric and positive definite 
form on the subspace of consistent initial conditions. 

Here max ( )σ ⋅  and min ( )σ ⋅  are maximum and minimum 
singular values of matrix ( ) , respectively. ⋅

Proof. If (106) has the solution P  with the properties 
(107), then matrix cannot have eigenvalues with 
positive real parts, Pandolfi (1980). Hence, the system (2) 
without delay is stable.  

0E

Let matrix P  be defined in the following way 

 ( 0
2

0

( ) ( ) ( )E tT t P t e E t dt
∞

= ∫q q q ) . (110) 

The integral equal zero if , and is finite if  
. 

( )t ∈Λq
( )t ∈Ωq
Then it is clear that P  is the solution of (106) with 

properties (107), Pandolfi (1980). 
Remark 6. Equations (106 - 107) are taken from 

Pandolfi in a modified form (1980). 
Remark 7 It is obvious that  Ω  corresponds the 

subspace of consistent initial conditions, Campbell (1980) 
or Owens, Debeljković (1985) there denoted with k

W ∗ . 
Remark 8. So the stability of (2) without delay is 

proven, Pandolfi (1980). 
In the sequel the rest of the proofs are presented, 

establishing conditions under which (LCSTDS) will be 
asymptotically stable. 

Let the function be considered: 

    , (111) ( )( ) ( ) ( ) ( ) ( )
t

T T T

t

V t t E PE t Q d
τ

κ κ
−

= + ∫x x x x x κ

Note that result presented in Owens, Debeljković (1985), 
indicates that 

 , (112) ( )( ) ( ) ( )T TV t t E PE t=x x x

is a positive quadratic form on , and it is obvious 

that all smooth solutions  are involved in 
k

W ∗Ω =

( )tx k
W ∗ , so 

( )( )V tx  can be used as a Lyapunov’s function for the sys-
tem under consideration, Owens, Debeljković (1985). 

It will be shown that the same argument can be used to 
declare the same property of another quadratic form present 
in (111). 

Clearly, using the equation of motion of (2), it can be 
stated that: 

 

( ) ( )
( )

0 0

0 1

( ) ( ) 2 ( )
2 ( ) ( )

( ) ( ) 2 ( ) ( )
( ) ( )

T T

T T

T T T

T

V t t E P PE I t
t E PA t

t Q t t S t
t Q t

τ

τ τ

Ω= + −

+

− −
− − −

x x x
x x

x x x x x
x x

−  (113) 

where matrix IΩ  is defined by: 

 I Q SΩ = + , (114) 

with the symmetric matrix , with the following 
property: 

TS S=

 . (115) ( ) ( ) 0, ( )T t S t t≥ ∀ ∈Ωx x x

and after some adjustemnts, following the ideas presented 
in Tissir, Hmamed (1996), it yields to:  

 ( ) ( )0 1( ) 2 ( ) ( )
( ) ( ) ( ) ( )

T T

T T

V t t E PA t
t Q t t Q t

τ
τ τ

= −

− − − −

x x x
x x x x

, (116) 

and based on the well known inequality: 

  ( )1 2 1 2
0 1 0 1

1
0 1 1 0

2 ( ) ( ) 2 ( ) ( )
( ) ( ) ( ) ( )

T T T T

T T T T T

t E PA t t E PA Q Q t
t E PA Q A PE t t Q t

τ τ
τ τ

−

−

− = −

≤ + −

x x x x
x x x x −

,(117) 

and by substituting into (116), it yields:  

  , (118) ( ) 1
0 1 1 0( ) ( ) ( ) ( ) ( )T T T TV t t Q t t E PA Q A PE t−≤ − +x x x x x

or: 

 ( ) 1 2 1 2( ) ( ) ( )TV t t Q Q t≤ − Ψx x x , (119) 

with matrix Ψ  defined by:  

 ( )1 2 1 2 1 2 1 2
0 1 1 0
T TI Q E PA Q Q A PE Q− − −Ψ = − −

)

. (120) 

( ( )V tx  is a negative definite form if: 

 ( )1 2 1 2 1 2 1 2
max 0 1 1 01 0T TQ E PA Q Q A PE Qλ − − − −− > , (121) 

which is satisfied if: 
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 (2 1 2 1 2
max 0 11 0TQ E PA Qσ − −− ) > . (122) 

Using the properties of the singular matrix values, Amir-
Moez (1956), the condition (122) holds if: 

 ( ) ( )2 1 2 2 1 2
max 0 max 11 0TQ E P A Qσ σ−− >− , (123) 

which is satisfied if: 

 
( )
( )

2 2 1 2
1 max 0

2 1 2
min

1 0
TA Q E P

Q

σ

σ

−

− >

⎤
⎥
⎥⎦

⎤
⎥
⎥⎦

⇒

3

, (124) 

that completes the proof.  
In the sequel, there is an example to show the 

effectiveness of the proposed method. 
Example 2. Consider the linear continuous singular time 

delay system with matrices as follows: 

0 0 1

1 0 0 0,1 0 0
0 1 0 , , 0 0 0
0 1 0 0 0 0

E A I A
−⎡ ⎤ ⎡
⎢ ⎥ ⎢= − = =
⎢ ⎥ ⎢⎣ ⎦ ⎣

 

Based on the given data, it can be calculated: 

0 0 0

1 0 0 1 0 0
0 1 0 , 0 1 0 ,
0 1 0 0 1 0

D DE E E
−⎡ ⎤ ⎡
⎢ ⎥ ⎢= − =
⎢ ⎥ ⎢ −⎣ ⎦ ⎣

 

0 0

0 0 0
0 0 0
0 1 1

DI E E
⎡ ⎤
⎢ ⎥− =
⎢ ⎥⎣ ⎦

. 

( ) ( )0 0 0 0 0 0

0 0 0
0 0 0 0,
0 1 1

D DI E E I E E
⎡ ⎤
⎢ ⎥− = − = =
⎢ ⎥⎣ ⎦

x x  

( ) { }1 2 2
ˆ ˆ : , ,DI EE x x x x− = Ω = ∈ ∈ = −x . 

( ) ( )0 0 0 0 0 0

1 0 0
0 1 0 0,
0 1 0

D DE E E E
⎡ ⎤
⎢ ⎥= = =
⎢ ⎥−⎣ ⎦

x x ⇒

}

⎤
⎥−
⎥⎦

( )

 

( ) {0 0 1 2 3 3: 0, 0, , 1D nE E x x x x= Λ = = = ∈ =x  

0 0

0

det 0, det ( ) 0,
2, deg det( ) 2.

A E A
rang E sE A

λ λ≠ ∃ ∋ − ≠

= − =
 

It can be adopted: 

2 0 0 0 0 0
0 2 1 0, 0 0 1 ,
0 1 1 0 1 1

2 0 0
0 2 0
0 0 0

T TQ Q S S

I S QΩ

⎡ ⎤ ⎡
⎢ ⎥ ⎢= = > = =
⎢ ⎥ ⎢ − −⎣ ⎦ ⎣

⎡ ⎤
⎢ ⎥⇒ = + = ⇒
⎢ ⎥⎣ ⎦

 

[ ]

( )
2 3

1

1 2 3 2

3

2 2 2 2
2 3 3 3 3 3

0 0 0
( ) ( ) 0 0 1

0 1 1

2 2 0,

T

x x

x
t S t x x x x

x

x x x x x x t
=−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − =
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

= − − = − = > ∀ ∈Ω

x x

x
 

[ ]

( )
( )

( )( )
2 3

1

1 2 3 2

3
2 2 2
1 2 2 3 3
2 2 2 2
1 2 2 2 3 3

22 2
1 2 2 3

2 2
1 2

2 0 0
( ) ( ) 0 2 1

0 1 1
2 2 2
2 2

2

2 0, ( )

T

x x

x
t Q t x x x x

x
x x x x x
x x x x x x

x x x x

x x t
=−

⎡ ⎤ ⎡
⎢ ⎥ ⎢=
⎢ ⎥ ⎢⎣ ⎦ ⎣

= + + +

= + + + +

= + + +

= + > ∀ ∈Ω

x x

x

⎤
⎥
⎥⎦

, 

det 2 0Q = ≠ , 

11 12 13

12 22 23

13 23 33

11 12 13

12 22 23

13 23 33

1 0 0
0 1 1
0 0 0

1 0 0 2 0 0
0 1 0 0 2 0
0 1 0 0 0 0

p p p
p p p
p p p

p p p
p p p
p p p

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− +
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ − = −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

, 

with solution: 

1 0 0
0 1 0 ,
0 0 0

P
⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

 

In the sequel, the properties of matrix P  are checked. 

a) TP P= . 

b) 

1 0 0
( ) 0 1 0 ( )

0 0 0
1 0 0 0
0 1 0 0 0, ( )
0 0 0 1

P t t

t

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = ∀ ∈
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

q q

q Λ

⎤
⎥
⎥⎦

. 

c)  [ ]2 3 2

3
2
2

1 0 0
( ) ( ) ( ) 0 1 0 ( )

0 0 0
1 0 0 0

0 ( ) ( ) 0 1 0 ( )
0 0 0 ( )

( ) 0, ( ) 0, ( )

T Tt P t t t

q t q t q t
q t

q t t t

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡
⎢ ⎥ ⎢= −
⎢ ⎥ ⎢−⎣ ⎦ ⎣

= > ≠ ∀ ∈Ω

q q q q

q q
Moreover there is a need to check (5).  
Based on: 

2 0 0
0 2 1
0 1 1

Q
⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

  ∧  , 1

0,1 0 0
0 0 0
0 0 0

A
⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦
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simple calculations yield to: 

{ } { }1 0.10 2.62 2.00 0.38 ,A Qσ= =  

1 2 1 2
1.41 0 0 0.71 0 0

0 1.34 0.45 , 0 0.90 0.45
0 0.45 0.90 0 0.45 1.34

Q Q−
⎡ ⎤ ⎡
⎢ ⎥ ⎢= =
⎢ ⎥ ⎢ −⎣ ⎦ ⎣

⎤
⎥−
⎥⎦

 

1 2
0

0.71 0 0
0 0.90 0
0 0.45 0

TQ E P−
⎡ ⎤
⎢ ⎥= −
⎢ ⎥⎣ ⎦

,  

( ) ( )1 2 1 2
min max 00.62 1.00TQ Q Eσ σ −= ∧ = =P .  

( )1 2
min

1 1 2
max 0

0,10 0.26
( )T

Q
A

Q E P
σ

σ −= < < , 

so, the system under consideration is asymptotically stable. 
Moreover: 

[ ]

( ) { }
2 3

1

1 2 3 2

3
2 2
1 2

1 0 0
( ) ( ) 0 3 0

0 0 0
3 0, ( ) \

T T

kx x
0

x
t E PE t x x x x

x
x x t W ∗=−

⎡ ⎤ ⎡
⎢ ⎥ ⎢=
⎢ ⎥ ⎢⎣ ⎦ ⎣

= + > ∀ ∈

x x

x

⎤
⎥
⎥⎦

)

0≥

 

so can be used as a Lyapunov’s function for the 
system (2). 

( ( )V tx

Conclusion 
Quite new, sufficient delay–independent criteria for 

asymptotic stability of (LCSTDS) are presented. In some 
sense this result may be treated as the further extension of 
results derived in Debeljković et. al (2006). 

In comparison with some other papers on this matter, 
there is neither the need for linear transformations of the 
basic system, nor need of solving the systems of high order 
linear matrix in the qualities. State space solutions are given 
in two different ways as useful tool for checking the 
presented results. 

Numerical examples are presented to show the 
applicability of the derived results. 

Appendix A 
The fundamental geometric tool in the characterization 

of the subspace of consistent initial conditions is the 
subspace sequence for linear singular system without delay  

 , (A1) 0
nW = R

 

 , (A2) 1
1 0 ( ),j jW A EW j−
+ =

where 1
0A− (⋅) denotes the inverse image of (⋅) under the op-

erator 0A . 
Lemma A1. The subsequence {W0, W1, W2, ... }is nested 

in the sense that: 

 W0 ⊃ W1 ⊃ W2 ⊃ W3 ⊃ ... (A3) 

Moreover: 

 (A) ⊂ Wj, ∀j ≥ 0, (A4) 

and there exists an integer k ≥ 0, such as that: 

 Wk+1 = Wk. (A5) 

Then it is obvious that: 

 Wk+j = Wk,  ∀j ≥ 1. (A6) 

If k* is the smallest such integer with this property, then: 

 Wk  ∩ (E) = {0},  k ≥ k* , (A7) 

provided that ( )0E Aλ −  is invertible for some λ ∈ .  
Theorem A.1. Under the conditions of Lemma A1,  is 

a consistent initial condition for the system under 
consideration if and only if ∈ W

0x

0x k*. 
Moreover  generates a unique solution ∈ W0x 0x k*, t≥0, 

that is really analytic on { }: 0t t ≥ . 
Proof. See Owens, Debeljković (1985). 
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Asimptotska stabilnost singularnih kontinualnih sistema sa čistim 
vremenskim kašnjenjem 

U ovom radu izvedeni su dovoljni uslovi posebne klase linearnih kontinualnih singularnih sistema sa čistim 
vremenskim kašnjenjem, čija se reprezentacija u prostoru stanja može predstaviti sledećom vektorskom 
diferencijalnom jednačinom stanja ( ) ( ) ( )0 1E t A t A t τ= + −x x x . Ovi novi uslovi, koji ne uključuju iznos čisto 
vremenskog kašnjenja, u eksplicitan kriterijum dobijeni su standardnim prilazom koji počiva na Ljapunovskoj 
stabilnosti. U tom smislu korišćena su dva, ranije razvijena prilaza data u radovima Owens, Debeljković-a (1985) i 
Pandolfi-a (1980). 

Ključne reči: kontinualni system, singularni system, linearni system, sistem sa kašnjenjem, vremensko kašnjenje, 
stabilnost sistema, asimptotska stabilnost, ljapunovska stabilnost. 

Ustoj~ivostx asimptotw singul}rnwh neprerwvnwh sistem so 
~istoj vremennoj zader`koj 

V nasto}|ej rabote vwvedenw dovolxnwe uslovi} osobogo klassa linejnwh neprerwvnwh singul}rnwh 
sistem so ~istoj vremennoj zader`koj, ~xy prezentaciy sosto}ni} v prostore vozmo`no predstavitx 

sleduy|im vektorialxnwm differencialxnwm uravneniem sosto}ni} ( ) ( ) (0 1E t A t A t )τ= + −x x x . $ti 

novwe uslovi}, kotorwe ne vkly~ayt summu ~istoj vremennoj zader`ki v }vnwj kriterij, polu~enw 
standartnwm podhodom, obosnovanwm na ustoj~ivosti L}punova. V &tom smwsle polxzovanw dva, ranx{e 
razvitw podhodw, predstavlenw v rabotah Ovvensa, Debelxkovi~a (1985.) i Pandolfi} (1980.). O~evidnwmi 
~islennwmi primerami pokazano primenenie vwvedenwh rezulxtatov. 

Kly~evwe slova: neprerwvna} sistema, singul}rna} sistema, linejna} sistema, sistema so ~istoj 
vremennoj zader`koj, vremenna} zader`ka, ustoj~ivostx sistemw, ustoj~ivostx asimptotw, ustoj~ivostx 
L}punova. 

La stabilité asymptotique des systèmes singuliers continus à délai 
temporel pur 

Dans ce travail on donne les conditions suffisantes de classe particulière des systèmes linéaires continus et singuliers à 
délai temporel pur dont la représantation dans l’espace d’état peut être présentée par une équation vectoriele 
différentielle d’état ( ) ( ) ( )0 1E t A t A t τ= + −x x x . Ces nouvelles conditions, qui ne comprennent pas le total du délai 
temporel pur dans le critère explicite, ont été obtenues par approche standardisée, basée sur la stabilité de Lyapunov. 
A cet effet on a utilisé deux approches développées auparavent dans les travaux d’Owens, Debeljakovic (1985.) et 
Pandolfi (1980.). L’applicabilité des résultats obtenus est démontrée au moyen des exemples numériques. 

Mots clés: système continu, système singulier, système linéaire, système à délai, délai temporel, stabilité du système, 
stabilité asymptotique, stabilité de Lyapunov. 
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