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Asymptotic stability of singular continuous time delayed system

Dragutin Lj. Debeljkovi¢, PhD (Eng)Y

This paper gives sufficient conditions for the stability of linear singular continuous delay systems of the form
Ex(t) = Apx(t)+ Axx(t—7). These new, delay—independent conditions are derived using on approach based on

Lyapunov’s direct method. Two different methods are applied: one based on crucial idea presented in paper by
Owens, Debeljkovié (1985) and the second in an anthological paper by Pandolfi (1980). Numerical examples have been

worked out to show the applicability of the results derived.
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Introduction

T should be noticed that in some systems consider their

character of dynamic and static state must be considered
at the same time. Singular systems (also referred to as
degenerate, descriptor, generalized, differential - algebraic
systems or semi — state) are those the dynamics of which
are governed by a mixture of algebraic and differential
equations. Recently, many scholars have paid much
attention to singular systems and obtaining numerous good
results. The complex nature of singular systems causes
many difficulties in the analytical and numerical treatment
of such systems, particularly when there is a need for their
control.

The problem of investigation of time delay systems has
been exploited over many years. Time delay is very often
encountered in various technical systems, such as electric,
pneumatic and hydraulic networks, chemical processes,
long transmission lines, etc. The existence of pure time lag,
regardless if it is present in the control or/and that state,
may cause undesirable system transient response, or even
instability. Consequently, the problem of stability analysis
for this class of systems has been one of the main interests
for many researchers. In general, the introduction of time
delay factors makes the analysis much more complicated.

It must be emphasized that there is a lot of systems that
are singular and demonstrate the phenomena of time delay
simultaneously; such systems are called the singular
differential systems with time delay.

These systems have many special characters. To describe
them more exactly, to design them more accurately and to
control them more effectively, tremendous effort to investigate
them must be made, but that is obviously very difficult work.
In recent references, authors has discussed such systems and
obtained certain results. But in the study of such systems, there
are still many problems to be considered. When the general
time delay systems are considered, in the existing stability
criteria, two main approaches have been adopted.
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Namely, one direction is to contrive the stability
condition which does not include the information on the
delay, and the other is the method which takes it into
account. The former case is often called the delay -
independent criteria, and generally provides simple
algebraic conditions. In that sense, the question of their
stability deserves great attention.

In the short overview that follows, only the results
achieved in the area of Lyapunov stability of linear,
continuous singular time delay systems (LCSTDS) will be
taken into consideration. In that sense, the contributions
presented in papers tackling the problem of robust stability,
stabilization of this class of systems with parameter
uncertainty (see the list of references) as well as other
questions in connection with the stability of (LCSTDS)
being necessarily transformed by Lyapunov — Krasovski
functional, to the state space model in the form of
differential — integral equations, Fridman (2001, 2002) will
not be discussed.

Moreover, over the last few years, numerous papers have
been published in the area of linear discrete descriptor time
delay systems, but this discussion is out of the scope of this
paper. The list of references provides more insight into this
metter.

To the best of our knowledge, some attempts in stability
investigation of (LCSTDS) was due to Saric (2001, 2002)
where sufficent conditions for convergence of appropriate
fundamental matrix were established.

Recently, in the paper of Xu et al. (2002) the problem of
robust stability and stabilization for uncertain (LCSTDS)
was addressed and necessary and sufficient conditions
were obtained in terms of strict LMI. Moreover in the same
paper, using suitable canonical description of (LCSTDS), a
rather simple criterion for asymptotic stability testing was
also proposed.

In this paper a quite different approach to this problem is
presented. Namely, the result is expressed directly in terms
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of matrices E, A, and A; naturally occurring in the

system model and avoiding the need to introduce any
canonical form into the statement of the Theorem.

The geometric theory of consistency leads to the natural
class of positive definite quadratic forms on the subspace
containing all solutions. This fact makes possible the
construction of Lyapunov stability theory even for the
(LCSTDS) in the sense that asymptotic stability is
equivalent to the existence of symmetric, positive definite
solutions to a weak form of Lyapunov matrix equation
incorporating the condition which refers to the time delay
term.

A definite aim of this paper is to present new results
concerning asymptotic stability of a particular class of
linear continuous singular time delay systems.

Notation and preliminaries

—real vector space
—complex vector space
— unit matrix
F=(fj)eR™ - real matrix

—Q=®

FT —transpose of matrix F

F>0 — positive definite matrix

F>0 — positive semi definite matrix

gq( = ) —range of matrix F

N(F) —null space (kernel) of matrix F

A(F) —eigen value of matrix F

o )(F) —singular value of matrix F

|||:|| — Euclidean matrix norm of
HFH = \/lmax (AT A)

gD —dazing inverse of matrix F

= —follows

— —such that

Generally, the singular differential control systems with
time delay can be written as:

EO)x(t) = f (t,x(t), x(t—7),u(t)), t=0

X(t) = p(t), —7<t<0 @)

where x(t) eR" is a state vector, u(t)eR' is a control
E(t) e R™" is a
¢ eC=C([-r, 0], ®") is an admissible initial state func-

vector, singular matrix,
tional, C =C([-z, 0], R") is the Banach space of con-

tinuous functions mapping the interval [-7, 0] into R"
with topology of uniform convergence.

Some previous results

Consider a linear continuous singular system with state
delay, described by

EX(t) = AX(t)+ Ax(t—1) (2a)

with known compatible vector valued function of initial
conditions

x(t) = p(t), —7<t<0 (2b)

where A, and A, are constant matrices of appropriate
dimensions.
Moreover it shall be assumed that rank E =r <n .
Definition 1. The matrix pair (E, A)is said to be regular
if det(SE—Ay) is not identically zero, Xu et al. (2002).
Definition 2. The matrix pair (E, Ay) is said to be

impulse free if deg (det(sE—Ay)))=rangE, Xu et al.

(2002).
The linear continuous singular time delay system (2)
may have an impulsive solution, however, the regularity

and the absence of impulses of the matrix pair (E, A))

ensure the existence and uniqueness of an impulse free
solution to the system under consideration, which is defined
in the following Lemma.

Lemma 1. Suppose that the matrix pair (E, Ay) is

regular and impulsive free and unique on [0,), Xu et al

(2002).

Necessity for system stability investigation produces the
need for establishing a proper stability definition. So, the
following applies:

Definition 3.

a) Linear continuous singular time delay system, (2) is said
to be regular and impulse free if the matrix pair (E, A)

is regular and impulsive free.
b) Linear continuous singular time delay system, (2), is said
to be stable if for any ¢ > 0 there exists a scalar (&) >0

such as that, for any compatible initial conditions ¢(t),
satisfying condition:  sup ||¢(t) | <S(e) ,the solution
—-7<t<0

x(t) of system (2) satisfies ||x(t)|< &, Vt>0.
Moreover if tIime(t)H—>0, system is said to be
—>®©
asymptotically stable, Xu et al (2002).

General solution to continuous singular time delay
state equitation

Campbell’s (1980) approach
Eq.(2) can be assumed to be in the form;

X(t) + Agx(t) = Ax(t-2)+f(t), t>0. (3)

To uniquely determine the solution of eq. (3) an arbitrary
initial function ¢(t) = x(t) =X, must be specified defined
on [-1,0], so that x(0) =X,(07).

Continuing in this manner, the given solution exists on
[0,n], eq.(3) has a unique solution on [n, n+1] such as
that x(n*)=x(n") and the solution exists on [0,n+1].
Thus for eq.(3), a unique continuous solution exists on
[-1,20) for any continuous specification of [-1,0].

Eq.(2) shall be considered under the assumption that
AE+ AjA is invertible for some A. The behaviour of

eq.(2) is different from that of eq.(3). As expected, X(t)

can no longer be taken to be arbitrary on [-1,0]. If in
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eq.(2), f=0, the following associated homogeneous
equation is obtained:

EX(t)+ Agx(t) =

Clearly all solutions of eq.(2) are of the form
X, (t)+xp (t) where x,(t) is a solution of eq.(2) and

A (t—1). @)

Xp (t) is an arbitrary solution of eq.(4).
It shall be proven that eq.(2) has always at least one initial
condition for which eq.(2) has a solution on [-1,:0). All the

consistent initial conditions of eq.(4) both for [-1,00) and
[-1,n) time periods shall then be characterized.

Let {X,(t)},n=1 be two sequences of infinitely
Xn(t) e.q.
(respectively f,(t)) should be thought of as x(t) eq.

differentiable functions defined on [0,1].

(respectively f(t))on [n—1n].

As it will be demonstrated, infinite differentiability is a
natural assumption since the existence of solutions often

requires at least some components of x(t), f(t) to be

infinitely differentiable at the integers.
The system eq.(2), now becomes:

Exn(t)+AOXn(t):Alxn—l(t)+fn(t)an21, (5)
for given X, .
The characterization of those x,(t) such as that eq.(5)

has a solution {x,}I _, such as that x;(1) =x,,1(0) is

sought.
From Campbell (1980), for n>1 follows:

X, (t) = E MEPEX, (0)
~ Ay A t Al
+EDe’EDA°tJ. e €Rr (Ax L () +h () dx  (6.a)
0

k-1
+(1-EPE)) " (-EAP ) AP (AXT(0)+£,™ (1)
m=0
where:

E=(UE+A)E,

N -1
E ! A =CEFR) AL o
A=(E+A) A,

fa (t) = (AE + A)) o (1)

and k is the index of matrix E .
There is a need to manipulate this expression a lot, so let
it be:

P-EPE, Q=EPA,, H=—-EAP. )
Note that P is a projectionand P, Q, H all commute.
Thus we have:

X, (t) = e 2Px, (0)

+ éDe*Q‘jte*Q'( (Axos(x) +,(x) ) dr ®)
0
k-1 M
(=P H AP (AXM©+ f,™ (1)
m=0

Regardless what x,; is, letting Px,(0)=Px,1()

makes PX continuous at n. The difficulty occurs with
(I-P)x atn.
That:
(1 =P)x1(0) = (I = P)xo (1) 9)
gives:
(- P)xo(l) (1-P)x

ZH A (A0 + 1, () (o

It will be shown that the given f(t) and any
{xo™(0)},m >0 a solution can be obtained by specifying
Xo™ (1) .

Take eq.(9) as the definition of (1 —P)xy ().

For n>1, it follows that:

(I—P)x (t) (I-P)x

ZH A (Amo+ioe) @

Thus the requirement that:
(1 =P)xn(0) = (I = P)xn4 (1) , (12)
forn>2,is
kel om
~P)) H AP°A

m=0

XM (©0)-x,™(@)=0, (13)

since f,™M(0) =f,,™ (1), m>0, n>2.
From eq.(7), for n>1, r >1:
%@ (1) = (-Q)"e *'Px, (0)
+ ED(—Q)re‘Q‘JteQ" (AXns () +1, (<)) drc
r-1 0
+EPD QM (Ax "0 +1," )

1=0

(14)

m

+(1- P)ZH AP (A0 0+ 5,0 (1))

In particular:
x,"(0) = (-Q)" Px(0)
+E2Y QM (Axo" (0) +E0(0)) (15)
1=0

m

k-1
+(1=P)Y_H AP(AX{M7(0)+H™"(0))
m=0

Define x{’ (@) =x{"(0), where x{"(0) is given by
eq.(11)

That an infinitely differentiable function on [0,1] exists
for arbitrary {x(0)}, {x’(2)} follows from Campbell
(1980), Lemma 13.1.

Let X, (t) be such a function.

It will be shown that is a consistent initial condition.
Given this Xy, X; will be computed and by construction
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Xo(M) =x,(0), m>1.
Suppose then that there exist Xg,...,X, and:

XD =X, m=0,r<n-1.  (16)

It will be shown that one can get a similar solution
to X ,,1 can be obtained.

By eq.(16), eq.(13) is satisfied.

The definition of Px,, in terms of eq.(6), the infinite
differentiability of f , and the induction hypothesis eq.(12)
applied to eq.(13) means that x,™ (1) = x,..,,"™(0) so that
the induction is complete.

Thus the following theorem can be proved.

Theorem 1. If f(t) is infinitely differentiable on [0,)
and {x,™ (0)} is an arbitrary sequence of numbers, and
Xo(t) is any infinitely differentiable function on [0,1] with

these derivatives at zero such that x,™ (1) is given by

eq.(15), then eq.(2) is consistent and has an infinitely
differentiable solution.

Let C be the space of C" - valued infinitely
differentiable function on [0,1] with the family of semi-
norms:

pn(f) = sup [ £ (1) ] (17)
0<t<1

For any integer n, let C, be those initial conditions
Xo(t) in C for which a continuous solution to eg.(4) exists

on [0, n].
Theorem 2. Each C,, is a closed subspace of C, o2C,;.
The set of consistent initial conditions C, = n%lcn is an

infinite dimensional closed subspace of C .

Proof. Using eq.(7) and eq.(9) it can be seen that each
C, consists of those x, € C whose derivatives at 0 and 1
satisfying n relationships.

For example C; consists of those which satisfy:

m

k-1
(1-P)Y H APAXV(©) =(1-P)Xo@),  (18)
m=0

while C, consists of those X, which also satisfy:

m

k-1
(1-P)Y H APA(x"@+x™(©0)=0. (19)
m=0
That is:

0= QP+

k-1 R PR R 20
(1-P)x > H APA| +E°Y Q"M AKN©)+  |=0 0)
m=0 1=0

k-1
+(1=P)Y H'AP Axy*™ (0)
1=0

That C, is closed follows from the continuity of
evaluation of derivatives in C .

That C, is infinite dimensional follows from Theorem 2.

For:
EX(t) + Agx(t) = f(t) , (21)

the assumption that (AE+A;) was invertible for some

scalar A was equivalent to consistent initial conditions
uniquely determining solutions.

For the delay equation eq.(2), the situation is more
complicated.

The existence of A is equivalent to X, and f, uniquely

determining Xx,,; but that is different from X, and f
uniquely determining the x,, .

While the infinitely differentiable initial conditions were
the appropriate space for the general problem on [0,), if

the point of interest is the existence on [0,n), then only
n(k —1) differentiability is needed.

Also, in the context of a particular problem as low as
k —1 times differentiability of some components of f and

X, Will suffice.
Of course, in general as many as n(k-1) times

differentiability of C on [0,n) and infinite differentiability

on [0,0) can be made.
Similarly, the complication caused by several delays is

that the consistent initial conditions must satisfy derivative
conditions at points other than the end points.

Wei's (2004) approach

Another approach to the general solution of singular
differential systems with time delay, given in (2), is
presented.

Definition 4. Let E be a square matrix, if there exists a

matrix EY satisfying:

1. EEY =E'E
2. EYEEY =E¢
3. EYEEY =E¢

E? the Drazin inverse matrix of matrix E, is simply called
D-inverse matrix.

I is the index of the matrix E, it is the smallest
nonnegative integer which makes:

rank(E'*!) = rank (E")

true.

Lemma 2. For any square matrix E, its Drazin inverse
matrix E¢ is existent and unique.

If the Jordan normalized form of E is

E:T(Jol Joljrl, (22)
then:
-1
E"=T(‘]6 8JT1. (23)

Here Jy is a nilpotent matrix, J; and T are invertible
matrices.
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Consider system
Ex(t) = Ax(t)+Bx(t—-7), t >0,

X(t) =), —7<t<0 (24)
and system

Ex(t) = Ax(t) + Bx(t—7) + Du(t) + f (t) ,

t>0, x(t)=0, —r <t<0. (25)

It is not difficult to prove the following result.
Lemma 3. If X(t),X(t) are respectively the solutions of

(24) and (25), then x(t) = X(t) + X(t) is the solution of (22).
Definition 5. Let X(t) e R™", X(t) is called the first

class foundation solution of singular differential systems
with delay, if it satisfies the matrix equation:

EX (t) = AX (t)+ BX (t—7),t >0,
EEY,t=0, : (26)
X :{0,—rstg0,

Definition 6. Let Y (t) e R™", Y (t) is called the second
class foundation solution of singular differential systems

with time delay, if it satisfies matrix equations:
EY (t) = AY (t) + BY (t—17)
+(I —EE")S(t), t=0,

@7)
| -EE%,t=0
Y(t) = e
© {Q—TStSQ
where &(t) is a delta function, or impulse function.
Lemma 3. For a delta function o&(t), there exists
t
I S(t—s)f(s)ds = f(t). (28)
0
Proof. Define f *g:
t
frg=] gt-9f()s, (29)
0

the convolution formula is known
L(f*g)=L(f)L(Q). (30)

It also shows that L(5) =1.
Then it follows that:

LUO ot-s)f (s)dsj =L(SM)(L(f)=L(f), (31)
That is:
It5(t —s)f(s)ds = f(t). (32)
0
Lemma 4. For any square matrix E, one can have:

(E+D(1-EEY)x(1+E(1 —EEY)) =1 -EE". (33)

Proof. Let | be an identity matrix with appropriate
dimension, and

J7t 0 )+
E=T| "1 T, 34
( 0 JOJ ( )
from Lemma 4.31, it follows:
-1
E? =T(‘]6 8JT1. (35)

For J, is a nilpotent matrix, Jy + 1 is invertible.

I 0\, Ji 0 )rar(Jt 0)-

| —EEY=T TiloT|t Tt T
o (s sl o)

o{ty Orrll ro-r[s o)

(E+|)(|—EEd)=T(J1(;rI JOO )T_lT(g ?jT_l (37)

(36)

+1

(00 Vi
‘T(o JQ+|)T

| —EEd:T(g ?)T‘l

(00 ool 0 YL
‘T(o Jo+|jT T(o J0+I) T (38)

= (E+1)(1-EE)(1 +E(1 ~EE)) "

i.e. is (38) is true.

Definition 7. If det(AE — A) = 0, the matrix pair (E, A)
is called regular. If (A E) is regular, the system (2) is
called regular.

Remark 1. Using the standard method, it can be proven
that if (E,A) is regular, systems (2), (6) and (7) are
solvable.

Theorem 8. Suppose matrix pair (E,A) is regular, X(t)
is the solution of (24), then provided that:

t>+7,

%(t) =[X(t)+v(t)(| +E(1-EEY))” EJ(&(O)

o X(t—6-7)EB+ o' (39)
+L W (t-0-)(1+E(-EE")) B v(0)
when:
0<t<r,
X(t) =[ X(©)+Y ®)(1 +E(1 -EE*))"E | p(0)
(40)

.| X(t—0-7)E'B+
+ @(6)do

-1

+Y(t-0-7)(1+E(1-EE’)) B

There X(t) is the first class of foundation solution of

singular differential systems with delay, Y (t) is the second

class of foundation solution of singular differential systems
with delay.

To prove Theorem 8, the homogeneous differential
systems with delay (24) can be partitioned into two classes
of systems:
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EX(t) = Ax(t) + Bx(t—-7), t>r,

EX(t) = AX(t) + EE'Bp(t—7) ,0<t<r, (41)

X(t) = EE%p(t), —r<t<0
and:

Ex(t) = Ax(t)+Bx(t-7), t>r,
EX(t) = Ax(t)+ (1 —EE®)Bp(t—7), 0<t<rz, (42)

x(t)=(1 —EEY)gp(t), —r<t<0.

Lemma 5. If x(t), X, (t) is respectively the solution of
(41) and (42), then X(t) = % (t) + X, (t) is the solution of
(24).

Lemma 6. Suppose matrix pair (A, E) is regular, then
the solution of (41) can be written as:

X (E)¢(0)+
+.[ X (t—0—-7)E*Bp(0)d6,t > 1,

X (t) = CS)

X(t)p(0) +
+JTX(t—9)EdB¢(9—z')d:9,OStSz’.
0

There X(t) is the first class of foundation solution of
singular differential systems with delay.

Proof. Since X(t) is the first class of foundation
solution of singular differential systems with delay, X (t)

satisfies matrix equations (26).
By taking Laplace transformation for (26), then:

_[ e M (EX (t))dt = E J’ e X ()t
0 0

w , (44)
= E/l_[ e X (t)dt — EX (0)= AELX (t) - EEE®
0
Iwefﬂt (AX (t) + BX (t - 7))dt =
0
= AJ.we’MX (t)ydt + ije’“X (t—7)dt
0 . 0 .(45)
= ALX (1) + BJ e AT X (t)dt
~ ALX (1) + Be J' "X (t)dt = (A+ BeT)LX (1)
0
AELX (t) - EEE? = (A+Be " )LX (t). (46)

Because (E,A)

AE — A—Be ™ isinvertible, the following is obtained:

is regular, for A large enough,

L{X(t)} =(AE - A-Be ™ )EEE". (47)

If x,(t) isthe solution of (41), then:

J.we’“(EX(t))dt _E J' ety (t)dt =
0 . 0 , (48)
E/lJ. &%, (t)dt — Ex, (0) = ELx, (t) — EEE? (0)
0
and:
Iw e~ (Ex, (1)) dt= j "o (Ex (1)) dt+ j " e (Ex (1)t
0 0 T
A J' "ot (Ex (1))dt + j EEYBe " oo(t — 7)dlt
0 0
+Aj°ce-ﬂ~t X (t)dt+ Bjme‘“ X (t—7)dt
: I B (49)
A ey (t)dt+Be J' ey, (t—7)dt
0 0
+ J' "EEd Be *o(t—7)dt=AL{x (1)} + Be " L {x (t)}
0
; j "EE‘Be gt —7)dt
0

That is:
(AE—A-Be™ ) 1L(x (1) =

P 50
:EEE“¢(0)+I EEYBe M p(t—1r)dt (50)
0

Since EY =EEYEY, from (47) it can be seen that:
L(x (t)) = (AE - A—Be ") *EEE%p(0) +
; j (AE - A—Be ") 'EEEYE‘Be “p(t—r)dt - (51)
0

— L(X (0)p(0) + LT L(X (t))E® Be *o(s - 7)ds

Defining auxiliary function @ :[-7,0) —[0, 1]:

0,
1

o(t) = { : i 8 : (52)
the following is obtained:
JOT L(X (1)E® Be (s — 7)ds =
—L(X(1) J.Ore’ﬂsEd Bo(t—7)dt

— (X (t))jme-“Ed Bo(t—r)pt-7r)dt .  (53)
0
= L(X(1)L(E"Bo(t - 7)p(t - 7))
:LU X(t—H)Engo(H—r)go(H—r)de
0

Then:
X (t) = X(t)(D(O)+J.t X(t—0)E'Bp(0—1)w(0—7)d0. (54)
0
When: t>7,

% (t) = X (1)p(0) + Io X (t—0-7)E*Bp(6)d0, (55)
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and, when 0<t<r,
% (t) = X(t)(p(O)+J.t X (t—60)E Bp(0—-1)d0. (56)
0

The proof of Theorem 8 is completed.
Lemma 7. Suppose matrix couple (A, E) is regular, then
the solution of (42) can be written as:

Y (t)(1 + E(1 —EE®))¢(0) t>r,
+I0 Y(t-0-7)(1+E( —EE" ) Bp(6)do,

X (t) = (57)
Y t)(1 + E(1 —EE?))p(0) 0<t<r

+jtY(t—9)(l +E(1-EE®) " Bp(0-7)do,

There Y (t) is the second class of foundation solution of
singular differential systems with delay.
Proof. Since Y (t) is the second class of foundation

solution of singular differential systems with delay, Y (t)

satisfies matrix equations (27).
By taking Laplace transformation for (27), the following
is obtained:

Iwe*‘ (EY (t))dt = E J' ey (t)dt

0 0

—EA J' ety (t)dt — EY (0) , (58)
0

= AEL(X (t))—E(l —EE%)

or:
Aj ety (t)dt+BJ e 47 (t)dt + (1 — EE)
0 0

= AL{Y (1)} + Bf e 7Y (t)dt + (1 - EE?) (59)

— AL{Y (1)} + Be-“J’: e 'Y (t)dt + (1 — EEY)
=(A+Be " )L{Y (1)} (I -EE")
That is:
AEL{Y (t)}-E(1-EE*)=(ABe **)L{Y (t)+(1-EE") . (60)

Because (E,A)
AE — A—Be ™ is invertible, then:

is regular, for A large enough,

L{Y(t)} =(AE-A-Be ") x (I +E)(I -EE"). (61)
If x,(t) is the solution of (10), then:
J e (Exy (1) dt = E J' " ey, ()t
0 . 0
_E J &% (t)dt — Ex, (0) , (62)
0

= AE(L{x(t)} —~E(1 —EE")) p(0)

and:

J' " e (Exy (1))t :Jrefﬂ (Ex, (1))t
0 0

; .[ " e (Bx, (0)dt = A J' Ore*ﬂt %, (t)dt

T

+ _[ (I —EE®)Be oot — r)dt + AI e, Mdt . (63)
0 T
+BI e’”“xz(t—r)dt:AJ. e U, (1)t
T 0
+ Be*“J. e, (t)dt+ J' "(1 —EE®)Be Hp(t — 7)dt
0 0

That is:
(AE-A-Be™)L{x(t)} = (1 -EE*)Eg(0)

+ J”(| —EEY)Be Mp(t —7r)dt - (64
0

Then:
L{X(t)} = (AE - A-Be™*")'x
x (1 —EE®)Ep(0) . (65)
J‘f(ﬂE—A—Be‘“)‘lx
o x(1 —EE?)Be *p(t — r)dt
From Lemma 4, follows:
L{x(t)} =(1E-A-Be ") 'x
x(E+1)(1 —EE%)x
x(1+E(1-EE")Ep(0)+ . (66)

j”(/lE ~A-Be ) YE+1)(I —EE?)x
ox(1 +E(I —EE®)) ' Be Mp(t — r)dt

By (61), it is obvious:
L{%(t)} = L{Y(t)}
x(1+E(I —EE®)) ™ Eg(0) . (67)
J” L{Y(®)} (1 +E(1 —EE"))™" x
+
0 xBe *p(6-1)do
By using auxiliary function ¢:[-7,0)—[0, 1] as
above, then:

'[T L{Y ()} (1 + E(1 —EE®))*Be *p(0 - r)do
0

_ et (1+E(I —EEY)) *x
= L{Y(t)}j‘o «Bp(0—7)do

_ “e (1 +E(1 -EE?)) " x
=LY (t)}J.o «Bo(0—)p(0—1)dO (68)

L{Y ()} (1 + E(1 —EE®)) " x Bo(t — r)p(t — 7)

L Y(t-0)e (1 +E(l -EEY)) " x
oxBp(0—1)p(6—7)do

Then:

X (t) =Y (t)(1 + E(1 ~EE?) " Eq(0)

+J"Y(t—¢9)(| +E(I—EEY) e (69)
oxBp(0—17)p(0—-17)do
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When t>17:
X (t) =Y (t)(I + E(1 —EE?)) " E(0)
(70)
OY(t-6-7)(1 +E(l —EE?))'x
_.xBp(0)d@
when 0<t<r,
X0 =Y®(1 +E(1-EE ) Ep(0)
(71)

+J.tY(t—¢9)(I +E(I - EE"))'1 B(p(ﬁ—r)dﬁ.
0

This completes the proof of Lemma 7.
Theorem 9. Suppose matrix pair (A, E) is regular, then

the solution of (24) can be written as:

K(t) :I;X(t—e)Ed (Du(@) + £ (6))de

+J“Y(t—6')(| +E(1-EE?) (72)

ox(Du(9)+ f(0))do

There X(t) is the first class of foundation solution of
singular differential systems with delay, Y (t) is the second

class of foundation solution of singular differential systems
with delay.

From Lemma 3, Theorem 8 and Theorem 9, the
following is obtained:

Theorem 10. Suppose matrix pair (A,E) is regular,

x(t) is the solution of (25), when:

t>r,
X(t) :(X(t)+Y(t)(I +E(1-EE*)” E)(p(O)

o X(t-0-7)E'B+ s
'[[‘*‘Y(I—H—r)(l+E(|_EEd)‘1B](/’(9)d9 (73)

+J“(X(t—9)Ed +Y(t-0)(1+E( —EEd)_l)x
0x(Du(6) + f(6))d@

when: 0<t<r,

=T

X(t) :(X(t)+Y(t)(I +E(1-€E*)” E);»(O)

t( X(t-6)E'B+
+L +Y (t-0)(1 +E(l - EE*

jig|o-o - 09

Y X (t-0)E +
.L [+Y(t0)(| vE(1—gedyt (PUO+ (@)do
There X (t) is the first class of foundation solution of si-
ngular differential systems with delay, Y (t) is the second

class of foundation solution of singular differential systems
with delay.

The main results

Consider the case when the subspace of consistent initial
conditions for singular time delay and singular nondelay
system coincide.

Owens-Debelkovié's approach
Theorem 11. Suppose that the matrix pair (E, Ag) is

regular with the system matrix A, being non-singular, i.e.

det Ay =0.

The system (2) is asymptotically stable, independent of
delay, if there exists a positive definite matrix P , being the
solution of Lyapunov’s matrix equation

AJPE+E"PA =-2(S+Q), (75)
with matrices Q=Q" >0 and S =S", such that:
X" () (S+Q)x(t) >0, Wx(t)eW,.\{0},  (76)

is a positive definite quadratic form on W, . \ {0}, W, . being

the subspace of consistent initial conditions® , and if the
following condition is satisfied:

| Al < Omin (Qéjanqéx (Q%ET Pj, (77

Here oma () and opmin () are maximum and minimum
singular values of matrix (-) , respectively.
Proof. Let the following function be considered:

V (x(t))=x" ()ETPEX(t) + I xT ()Qx(x)dx, (78)

t-7
Note that and Lemma Al2 and Theorem Al indicates that
V(x(t))=xT () ETPEX(t), (79)

is a positive quadratic form on W,., and it is obvious that

all smooth solutions x(t) evolve in W,., so V (x(t)) can

be used as a Lyapunov function for the system under
consideration, Owens, Debelkovié (1985).

It will be shown that the same argument can be used to
declare the same property of another quadratic form present
in (78).

Clearly, using the equation of motion of system, given
(2), the following applies:

V (x(t))=x" (t)( Aj PE+E" PAy +Q)x(t)
+2x7 (1) (ETPA)x(t—7) . (80)
—x"(t—7)Qx(t—7)
and after some manipulations, yields to:
V (x(t))=x" (t)( A) PE + ET PA, +2Q+2S ) x(t)
+2x" (1) (ETPA)-xT ()Qx(t) - X" (t)Sx(t)
X" (t-7)Qx(t—7)

From (77) and the fact that the choice of matrix S, can be
done, such that:

. (81)

X" (t)Sx(t) >0, vx(t)eW,.\{0}, (82)

the following result is obtained:

v W, subspace of consistent initial conditions,Owens,Debeljkovi¢ (1985).
2 See Apendix A.
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AV (x(t))< 2x" (t)(ETPA ) x(t-7)

: (83)
X" ()Qx(t)—x" (t—7)Qx(t—7)
and based on the well known inequalityg:
2x" ()ETPAX(t—7) = 2x" (t) ( ET PAlQ_%Q%]x(t -7) (84)

<x"()ETPAQ AT PETX(t) + x" (t—7)Qx(t—7)
and by substituting into (83), it yields:
V (x(t))< —xT ()Qx(t) +x" (t)ET PAQ AT PEX(t), (85)
or:
V(x(®)< X" ©QTQx(t), (86)
with matrix I' defined by:
I=(1-Q*E"PAQV’QV’ATPEQ*).  (87)
V (x(t)) is a negative definite form if:
1= Amax (Q?ETPAQY2Q V> ATPEQ ™) > 0, (88)
which is satisfied if:
1-0pe (QV?ETPAQY?)> 0. (89)

Using the properties of the singular matrix values, Amir-
Moez (1956), the condition (17) holds if:

1_O'rz1ax (Qil/z ET P)O-r%ax (AlQij/z) >0, (100)
which is satisfied if:
AL o (@ ETP)

>0, (101)
o (Q)F

what completes the proof.

Remark 2. Equations (75-76) are modified forms taken
from Owens, Debelkovi¢ (1985).

Remark 3. If the system under consideration is just an
ordinary time delay, e.g. E =1, the result is identical to
that presented in Tissir, Hmamed (1996).

Remark 4. Let first the case when the time delay is
absent be discussed.

Then the singular (weak) Lyapunov’s matrix equation
(75) is naturally the generalization of classical Lyapunov’s
theory.

In particular

If E is non-singular matrix, then the system is

asymptotically stable if and only if A=E™'A, Hurwitz

matrix.
Equation (75) can be written in the form:

ATETPE+E"PEA=-Q, (102)

with matrix Q being symmetric and a positive definite
form, in the whole state space, since then

Wi = R (E¥) = R".

3 20T (t)v(t) <u’ @)Put)+v' )P v(t), P>0

In those circumstances E' PE is a Lyapunov’s function
for the system.

The matrix A, is by necessity non-singular and hence
the system has the form

EoX(t) = X(t), X(0) =Xo. (103)

Then for this system to be stable (75) it must also hold
and have familiar Lyapunov’s structure

EJP+PE, =-Q, (104)

where Q is a symmetric matrix but it is only required to be
a positive definite form on W

Remark 5. There is no need for the system under
consideration to posses properties given in Definition 2,
since this is obviously guaranteed by demand that all

smooth solutions x(t) evolve in W,. .

Example 1. Consider the linear continuous singular time
delay system with matrices as follows:

Based on the above presented procedure the following
data, can easily be found, Debeljkovi¢ et. al. (2006):

E=(AE+A)iio-E

A -1 00
E=A'E=|0 -10|,>
0 10

={x:x eR, x; eR, x2:—x3}'

det Ay #0, 34 > det(AE-Ay)) =0,
rang E =2, deg det(sE — A)) =2.
It can be adopted that:

100
Q=|0 1 0|=Q" >0,
001
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01 1
§=8T=[1 0 -1|,
1 -1 -1

11 1
S+Q=[1 1 -1| =
1

-1 0

01 1| x
XT(t)SX(t):[Xl X2 X3] 1 O —1 XZ
1 -1 1] %

= (lexz +2X X3 — 2Xp X3 — x§)
:(le(xz +X3)+2%5 —x§)
=x§ >0, Vx(t) eW,. \{0}

X2 =—X3

1 0 0 x
X XM =[x % X]|0 1 0] %
00 1| x

=(x12+x22+x§)xz}X3

=X +2x; >0, ¥x(t) W, \{0}

Moreover:

xT(OQx(t)=x2 +xZ +x2 >0, Vx(t)eW .

detQ=1+0,

and:

11 1
X' (S+Q)x() =[x X, xg]ll 1 —1"
1-10

:(xf+x§+2(x2+x3)+2x§)

=X +3%5 >0, Wx(t)eW,. \{0}

Also it can be computed:

1 00| pu P2 pafj-1 00
01 O0{p2 P2 Ps||0 10+

01 1fps P PO O O

-1 0 Ofpu P2 P3|/l 00 11
+ 0 —1 O plZ p22 p23 O 1 1 :—2 1 1
0 0 Of[pis Pz Pzf|0 01 1-10

10 2
P=(0 3 -2|= As(ps)>0=>
2 -2 ps

p33>% = P:PT>O

Generally it can be adopted:

10 2
P=(0 3 -2|=P">0.

2 -2 6

Xp=—

X2 =—X3

Finally, condition (76) has to be checked:
|Af=0.10 o{Q}={111},

L fto0] 4, [too0
Q?=[0 1 0, Q2=|0 1 0|,
001 001

1 1
Gmin [szzl ] Gmax = [Q 2ET pj:382 )

1
Omin (sz
—— =< 0.26,
Omax (QZ ET Pj
s0, the system under consideration is asymptotically stable.
For the sake of further investigation let, for the previous

case, the situation when E =1 be adopted.
Then it can be calculated:

o{Ao}={ ., 5} ={-1 -1 -1}, Apax =—1.

0.10= A <

o] = T (o) = s (AD Ao )

-2 0 0
A+A =0 -2 -1/,
0 -1 -2
A( A+ M) ={A, A, A} ={-1, -2, -3},
/u(AO):%lmax(AOJ"A-)r):_%-
Following Mori et al. (1981):
1(A)+|A]<0, - -05+010=-0.4<0.

the asymptotic stability of the non-delay system under
consideration is confirmed.
Moreover:

1 00| x
x"(ETPEX(t) =[x X X]|0 3 0} x,
00 0l %

=(x +3x3) . >0 Vx(®) eW,. \{0}

Xp=—

so V (x(t)) can be used as a Lyapunov’s function for the
system (2).

Pandolffi approach

Our result is stated as follows:

Theorem 12. Suppose that the system matrix A, is non-
singular, i.e. det Ay #0.

Then system (2) with the known compatible vector
valued function of initial conditions can be considered and

it can be assumed that rank E; =r <n.
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Matrix E, is defined in the following way E, = Ay'E
The system (2) is asymptotically stable, independent of
delay, if

| Al < omin (QY? ) omax (Q Y2 ES P, (105)

and if there exists:
(i) (nxn) matrix P, being the solution of Lyapunov’s
matrix:

EqP+PE, =2l (106)

with the following properties:

a) P=P' (107a)

b) Pq(t)=0, q(t)eA (107b)

¢) q' t)Pq(t)>0, q(t)=0, q(t)eQ, (107¢)
where:

Q=N(I1-EEP), (108)

A=N(EE®), (109)

with matrix |, representing generalized operator on R"
and identity matrix on subspace Q and zero operator on
subspace A and matrix Q being any positive definite
matrix.

Moreover matrix P is a symmetric and positive definite
form on the subspace of consistent initial conditions.

Here onax () and opin () are maximum and minimum
singular values of matrix (-) , respectively.

Proof. If (106) has the solution P with the properties
(107), then matrix Egcannot have eigenvalues with
positive real parts, Pandolfi (1980). Hence, the system (2)
without delay is stable.

Let matrix P be defined in the following way

q" )Pq(t) = T( eEUE (1) H)zdt . (110)
0

The integral equal zero if q(t)eA, and is finite if
aqit)eQ.

Then it is clear that P is the solution of (106) with
properties (107), Pandolfi (1980).

Remark 6. Equations (106 - 107) are taken from
Pandolfi in a modified form (1980).

Remark 7 It is obvious that Q corresponds the
subspace of consistent initial conditions, Campbell (1980)
or Owens, Debeljkovic (1985) there denoted with W, .

Remark 8. So the stability of (2) without delay is
proven, Pandolfi (1980).

In the sequel the rest of the proofs are presented,
establishing conditions under which (LCSTDS) will be
asymptotically stable.

Let the function be considered:

t
V (x(t)) = xT (ET PEX(t) + I X7 (K)Qx(K)dx,  (111)
t-r
Note that result presented in Owens, Debeljkovié (1985),
indicates that
V(x(t))=x" ()ETPEX(t), (112)

is a positive quadratic form on Q@ =W,,, and it is obvious
that all smooth solutions x(t) are involved in W,., so

V (x(t)) can be used as a Lyapunov’s function for the sys-

tem under consideration, Owens, Debeljkovic (1985).

It will be shown that the same argument can be used to
declare the same property of another quadratic form present
in (111).

Clearly, using the equation of motion of (2), it can be
stated that:

V (x(t))=x" (t)(E P+ PE; — 215 )X (1)
+2x" (t)(EoPA! )x(t—7)

(113)
—x" (©)Qx(t)x" —2xT (t)Sx(t)
X" (t—7)Qx(t—7)
where matrix 1, is defined by:
lo=Q+S, (114)

with the symmetric matrix S=S", with the following
property:

xT(t)Sx(t) >0, Vx(t)eQ. (115)

and after some adjustemnts, following the ideas presented
in Tissir, Hmamed (1996), it yields to:

V (x(t))=2x" (t)(Eg PA )x(t-7)
X)X (1) - x" (t-7)Qx(t—7)

and based on the well known inequality:

(116)

2x" (t)Eg PAX(t—7) = 2x" (t)( E5 PAQY*Q"?)x(t-7) (117)
<xT ()ET PAQ AT PETx (1) + X (t — £)Qx (t —7) ’

and by substituting into (116), it yields:
V (x(t))< —xT ()Qx(t)+x" (t)E] PAQ AT PEyx(t) , (118)
or:
V (x(t))< —x" ()Q¥? ¥ Q¥2x(t), (119)
with matrix ¥ defined by:
¥ =(1-QY°E; PAQVPQ ¥ AT PE,Q¥?). (120)
V (x(t)) is a negative definite form if:
1 Amax (QV2Eg PAQ V2Q V2 AT PE,Q %) > 0, (121)

which is satisfied if:
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1- o (QV*Eg PAQ Y2 ) > 0. (122)

Using the properties of the singular matrix values, Amir-
Moez (1956), the condition (122) holds if:

1-0pax (QV2ES P)omax (AQ¥2) >0, (123)

which is satisfied if:

A ot (QETP)
O-mln (Qj/z)

that completes the proof.

In the sequel, there is an example to show the
effectiveness of the proposed method.

Example 2. Consider the linear continuous singular time
delay system with matrices as follows:

-1 0 0 0100
Eob={0 -1 0|, A=I, A=/0 00
0 10 0 00

>0, (124)

Based on the given data, it can be calculated:

100 100
E2=|0 -1 0| EE2=/0 1 0
010 0-10

I—EOEOD:[

000
N(I-EoER)=(1-EoEs )Xo =|0 0 0|xo=0,=
011

o O o
= O O

— O O
L 1

N(|—ééD)=Q={XZX1€R, XpeR, Xp =X }.

100
N(EoEg )=(EoER)xo=|0 1 0[xo=0, =
0-10

N(EOE(?):A:{x:xlzo, X, =0, Xg eR”,ngl}

det Ay 20, 31 > det(AE—-A)) =0,
rang E =2, degdet(sE — Ay) = 2.

It can be adopted:

200 00 0
Q=|0 2 1|=Q">0, S=S"={0 0 -1|,
011 0 -1 -1

0
0| =
0

o onN
onN O

= |Q=S+Q=[

00 0%
x"®)SXt) =[x X x3][0 0 —1}[&}:

0 -1 -1/ %
= (—2x2x3 -Xx3 )xz:-y@ =2x3—x2 =x2>0, Vx(t)eQ

2 0 0%
xT(OQX() =[x X, xg]lo 2 1"xz}

01 1%
(2x12+2x§+2x2x3+x§)

( Xi +x2+x2+2x2x3+x3),
( X2+ X3 + x2+x3))
X2=—X3
2x¢

+x2>0, Vx(t)eQ

detQ=2+=0,

-1 0 O] pu P2 P
0 -1 1{p2 P2 Paxs|t

0 0 Of[ps Pz Pss
Pu P Psf[-1 0 O -2 0 0
+ P2 P22 P2sf| 0 -10|=|0 20
Pz Pz PO 1 O 0 00

with solution:
100
=01 0},
00O

In the sequel, the properties of matrix P are checked.
a) P=PT.
1
Pq(t)=|0 a)
0

1 0 '
0 0|= 0, vqt)eA
0 1

100
qT(t)Pq(t)=qT(t)[0 1 Oiq(t)
000

100 0
c) =[0 g (t) —Q3(t)][0 1 OH QZ(t)]
0 0 0] -as(t)

=g3(t) >0, q(t)=0, vq(t)eQ
Moreover there is a need to check (5).
0
0 1
0

o O o

b)

oORr o ©Or o

o O o

Based on:

200 01 0
Q=|0 21| A A=[0 O
011 0 0
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simple calculations yield to:

|A[=010 o{Q}={262 2.00 038},

141 0 O 071 0 0
QY= 0 134 045|, Q¥*=| 0 090 -045
0 0.45 0.90 0 -045 1.34

071 0 O

QY?EjP=| 0 -0.90 0],

0 045 0

i (Q¥2)=0.62 A ey = (QY2E] P)=1.00.

1/2

Omin (Q)

0,10=|Al<————FF—=—<
H H O'max (Q_]/Z Eg P)

0.26,

so, the system under consideration is asymptotically stable.
Moreover:

1 00| x
XT(ETPEX(t)=[% X X3]|0 3 O %,

00 0l x
= (X +3x3 )Xz}xs >0, Vx(t) eW,. \{0}

so V(x(t))can be used as a Lyapunov’s function for the
system (2).

Conclusion

Quite new, sufficient delay—independent criteria for
asymptotic stability of (LCSTDS) are presented. In some
sense this result may be treated as the further extension of
results derived in Debeljkovi¢ et. al (2006).

In comparison with some other papers on this matter,
there is neither the need for linear transformations of the
basic system, nor need of solving the systems of high order
linear matrix in the qualities. State space solutions are given
in two different ways as useful tool for checking the
presented results.

Numerical examples are presented to show the
applicability of the derived results.

Appendix A

The fundamental geometric tool in the characterization
of the subspace of consistent initial conditions is the
subspace sequence for linear singular system without delay

Wy =R", (A1)

Wy = AZ(EW,), |20, (A2)

where Ay (-) denotes the inverse image of (-) under the op-
erator Ay.

Lemma Al. The subsequence {Wy, Wy, W, ... }is nested
in the sense that:

WoDWlDWZDW:gD... (A3)

Moreover:
N(A) c W, Vj>0, (A4)
and there exists an integer k > 0, such as that:

Wiy = W (A5)

Then it is obvious that:
Wiej = W, Vj>1. (A6)
If k* is the smallest such integer with this property, then:
Wy n N (E) = {0}, k>k*, (A7)

provided that (AE — A, ) is invertible for some 2 € R.

Theorem A.1. Under the conditions of Lemma Al, X, is
a consistent initial condition for the system under
consideration if and only if Xy € Wye.

Moreover X, generates a unique solution X, € Wi*, t>0,
that is really analytic on {t:t>0}.

Proof. See Owens, Debeljkovié (1985).
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Asimptotska stabilnost singularnih kontinualnih sistema sa ¢istim
vremenskim kasnjenjem

U ovom radu izvedeni su dovoljni uslovi posebne klase linearnih kontinualnih singularnih sistema sa ¢istim
vremenskim kaSnjenjem, ¢&ija se reprezentacija u prostoru stanja moZe predstaviti slede¢om vektorskom

diferencijalnom jednaginom stanja EX(t)=Agx(t)+Ax(t—7). Ovi novi uslovi, koji ne ukljuduju iznos &isto
vremenskog kasnjenja, u eksplicitan kriterijum dobijeni su standardnim prilazom koji poéiva na Ljapunovskoj
stabilnosti. U tom smislu koriéena su dva, ranije razvijena prilaza data u radovima Owens, Debeljkovié¢-a (1985) i
Pandolfi-a (1980).

Kljucne reci: kontinualni system, singularni system, linearni system, sistem sa kasSnjenjem, vremensko kaSnjenje,
stabilnost sistema, asimptotska stabilnost, ljapunovska stabilnost.

Y CTOMYMBOCTH ACUMIITOTHI CHHTYJISPHBIX HETPEPHIBHBIX CUCTEM CO
YUCTOY BPEMEHHOM 3aiepKKON

B Hacrosmell paGoTe BHIBE[IEHEI AOBOJIBHBIE YCIOBHSI 0COBOTO Kiacca NTEHEAHBIX HENPEPHIBHBIX CHHTYJSIPHBIX
CHCTEM CO 9HCTOH BPEMEHHON 3afepPXKKOMH, UbIO NPE3EHTALMIO COCTOSHAS B IMPOCTOPE BO3MOXKHO IPEACTABHTH
CIIEflyIOIMM BEKTOPHANLHEIM AuddepeHnualbibM ypaBHeHHEM cocTosHmA EX(t)=Apx (t)+Ax(t—7). Drm
HOBBIE YCIOBESI, KOTOpBIe He BKITIOUAKOT CyMMy YHCTOH BPEMEHHOH 3aJlepXKH B SBHGIH KpETePHH, DOTyd4eHEI
CTaHapTHLIM IIOJXOA0M, OGOCHOBAHbIM Ha ycToidmBocTH JIsmyHOBa. B 9TOM CMBICIE HONB30BAHbI ABa, PaHbIIE
pa3BATHI IOAXOABL, NPEACTaBNIeHbI B paboTax OBBenca, [JeGenskonda (1985.) n Mangondms (1980.). OuengHbIME
YHC/IeHHBIMA IPAMEPaMH TOKa3aHO IPAMEHEHHE BbIBEICHBIX PE3yIbTaTOB.

Katouesvie caosa: HeNpephIBHAsl CHCTEMa, CHHTYJISIPHAs CHCTEMa, JIHHEHHas CHCTEMa, CHCTEMA CO WHCTOH
BpEMEHHOH 3aJlep>KKO¥, BpeMeHHas 3afiepXKKa, YCTOMIMBOCTh CHCTEMBI, YCTONYABOCTS aCHMITOTHI, YCTOHIHBOCTH

JIanmyHoBa.

La stabilité asymptotique des systemes singuliers continus a délai
temporel pur

Dans ce travail on donne les conditions suffisantes de classe particuliére des systémes linéaires continus et singuliers a
délai temporel pur dont la représantation dans I’espace d’état peut étre présentée par une équation vectoriele

différentielle d’état Ex (t)= Agx(t)+ Axx(t—7) . Ces nouvelles conditions, qui ne comprennent pas le total du délai
temporel pur dans le critére explicite, ont été obtenues par approche standardisée, basée sur la stabilité de Lyapunov.

A cet effet on a utilisé deux approches développées auparavent dans les travaux d’Owens, Debeljakovic (1985.) et
Pandolfi (1980.). L applicabilité des résultats obtenus est démontrée au moyen des exemples numériques.

Mots clés: systeme continu, systéme singulier, systéme linéaire, systtme a délai, délai temporel, stabilité du systeme,
stabilité asymptotique, stabilité de Lyapunov.
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