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Software development for subsonic aircraft’s longitudinal stability 
derivatives calculation 
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Longitudinal aerodynamic stability derivatives of subsonic general configuration aircraft can be calculated using fi-
nite element methodology based on the Doublet Lattice Method (DLM), the Slender Body Theory (SBT) and the 
Method of Images (MI). Applying this methodology, software DERIV is developed. The results obtained using this 
program is compared to NASTRAN examples HA21A and HA75H. A good agreement is achieved between results 
from DERIV, NASTRAN, [5] and [6]. 
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Introduction 
URING the 60s, as the computer aerodynamics was 
just starting to develop, the idea to make use of the lift-

ing surfaces theories for estimation of aerodynamic deriva-
tives was proposed [1]. All theories assume the linear-small 
amplitude, sinusoidal motion. 

To the present day, especially for aircraft flutter clear-
ance, a lot of methods have been developed for accuracy of 
steady and oscillatory aerodynamic loads determination. 
Nowadays these loads of general configuration are calcu-
lated using the vortex and doublet-lattice finite elements’ 
methods. The chord wise and span wise load distribution on 
lifting surfaces and longitudinal (z-vertical and y-lateral) 
load distribution on bodies can be calculated for configura-
tions that consist of an assemblage of lifting surfaces (with 
arbitrary plan form and dihedral, with or without control 
surfaces) and bodies (with variable circular or elliptic cross 
sections). 

The numerical method used was in the paper developed 
for reliable calculation of flutter speeds of the subsonic air-
craft. For, already known normal modes of the aircraft 
structure the unsteady, aerodynamic load distributions on 
general configuration can be calculated. This possibility can 
be used to calculate steady and unsteady aircraft stability 
aerodynamic derivations. In this case, input data comprise a 
few of special rigid body motions of aircraft structure. 
Choosing which rigid body motions depends whether longi-
tudinal or lateral aircraft’s aerodynamic derivatives are ob-
served. In this paper, longitudinal derivatives are analyzed. 

The software package UNAD, for calculation of sub-
sonic, unsteady aerodynamic forces of general configura-
tion, needed for flutter calculation was developed. The re-
spective package has been modified and package DERIV 
developed for steady and unsteady longitudinal aerody-
namic derivative calculation for subsonic, general configu-
rations. The developed software DERIV was tested on 
NASTRAN examples HA21A and HA75H. The obtained 

results were compared to the data from NASTRAN, [5] and 
[6]. 

S&MN projecting teams for estimation of unsteady 
aerodynamic derivatives of general configuration use semi 
empirical method based on NASA’s DATCOM software. 
Software DERIV is the first domestic package that can give 
steady and unsteady derivatives based on the integration of 
unsteady aerodynamic loads over the whole subsonic air-
craft configuration. 

Subsonic, unsteady aerodynamic loads 
Aerodynamic finite element methods are based on a ma-

trix equation: 

 { } [ ]{ }w A Cp= ∆ , 2 / 2
lower upperp p

Cp
Uρ
−

∆ =  (1) 

In eq.(1) { }w  is column matrix of downwashes (positive 

down), [ ]A  is square matrix of aerodynamic influence co-

efficients, and { }Cp∆  is column matrix of dimensionless 
lifting surface coefficients . The main flow is defined by 
density ρ  and speed U  of free stream. Aerodynamic ele-
ments are defined by general configuration geometry in the 
Cartesian coordinate system. The motion of general con-
figuration is defined by degrees of freedom at aerodynamic 
grid points. Aerodynamic elements are trapezoidal boxes 
representing the lifting surfaces, ring slender bodies’ ele-
ments, and ring image elements representing slender body 
and interference influence. 

The DLM is used for interfering lifting surfaces in sub-
sonic flow. As DLM is based on small-disturbance, linear 
aerodynamics, all lifting surfaces are assumed to lie nearly 
parallel to the main flow. Each interfering surface is di-
vided into boxes. Boxes are small thick less (flat palate) tra-
pezoidal lifting elements. The boxes are arranged to form 
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strips. Strips lay parallel to free stream and the surface 
edges. Fold and hinge lines lie on the box boundaries. In 
order to reduce the number of variables, symmetry option is 
used. Unknown pressure Cp∆  on each box is represented 
by a line of pressure doublet at quarter chord of the box. 
Known downwash w  collocation (control) point lies at the 
mid span of the box three quarter chords. DLM aerody-
namic elements are represented of Fig.1. 

 

Figure 1. Lifting surface’s idealization 

SBT is used to determine lifting characteristics for iso-
lated bodies. SBT assumes that the flow in the body vicinity 
is quasi-steady and two-dimensional. Bodies can have z-
vertical, y-lateral or both degrees of freedom. Slender bod-
ies of general configuration are divided slender body ele-
ments (axial velocity doublets) as shown on Fig.2. Slender 
body elements are used for calculating aerodynamic loading 
due to the motion of the body. 

 

Figure 2. Idealization of slender body 

The subsonic wing-body interference is based on the su-
perposition of singularities and their images, described in 
the method of images (MI). Each slender body is substi-
tuted by cylindrical interference body, which circumscribes 
the slender body. The interference body is divided into in-
terference elements, as shown on Fig.3. The interference 
element is used to include the influence of the other bodies 
and lifting surfaces on the body, to which the element be-
longs into calculation. Each interference element is substi-
tuted by z-vertical and y-lateral modified acceleration po-
tential pressure doublets. The primary wing-body interfer-
ence is accounted for by a system of images of DLM vor-
tices and a system of doublets within each interference ele-

ment. There is no influence between two interference ele-
ments which belong to the same interference body. 

 

Figure 3. Interference element’s idealization 

The above taken into consideration, matrix eq. (1) can be 
written in the following form: 

 
, , ,

, , ,

,

0
0 0

w w w i w sw

i w i i i s i

s s s s

A A Aw Cp
A A A

w A
µ
µ

⎧ ⎫∆⎡ ⎤⎧ ⎫⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬⎢ ⎥⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎣ ⎦ ⎩ ⎭

 (2) 

In eq. (2): 
− ,r sA  is aerodynamic influence matrix element, which de-

fines a part of normal wash on s -th finite element due to 
the unit strength r -th singularity. Indexes for the 
singularities and the aerodynamic finite elements are: 
w -lifting surface, i -image and s -slender body. 

− ww  is the column of the known downwashes on the lift-
ing surface elements in the collocation (control) points 
normalized by free stream speed U . 

− { }0iw =  is the column of zero downwashes on the im-
age elements. 

− sw  is the column of the known downwashes on the slen-
der body elements in axis midpoints normalized by free 
stream speed U . 

− Cp∆  is the unknown column of the strengths of lifting 
surface singularities (acceleration potential pressure 
doublets). 

− iµ  is the unknown column of the strengths of images 
singularities (modified acceleration potential pressure 
doublets). 

− sµ  is the known column of the strengths of slender body 
singularities (velocity  potential doublets). 
The strength of slender body velocity potential doublet 

of unit the length is known from the two-dimensional the-
ory. For j -th slender body element, described by midpoint 

( ), ,ξ η ζ  and radius jR , follows: 

 2
, ,( , , , ) 2 ( , , , )s j j s jR Uwµ ξ η ζ ω π ξ η ζ ω=   

In the above relation ω  is the angular frequency of the 
harmonic motion of the slender body. As each slender body 
has z-vertical, y-lateral or both degrees of freedom, gener-
ally each j -th element of the body is substituted by the two 
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velocity potential doublets, acting on the real element’s ax-
ial length jξ∆ : 

 ( ) ( )2
, ,2y y

js j s jR Uwµ π=  jξ∆ ; ( ) ( )2
, ,2z z

js j s jR Uwµ π=  jξ∆  (3) 

If boundary values on slender bodies are known, the 
strength of the slender bodies’ singularities can be calcu-
lated using eq. (3). Substituting these obtained strengths in 
eq. (2), it follows: 

 { } { }, ,

, ,

w w w iw w

i i w i i i

A Aw w Cp
w A A µ

− ∆ ∆⎡ ⎤= ⎢ ⎥−∆ ⎣ ⎦
 (4) 

In eq. (4), w ww w− ∆  and iw−∆  are modifications of nor-
malized downwashes on lifting surface elements and im-
ages caused by the known slender body singularities. Eq. 
(4) represents a system of linear equations with complex 
coefficients. The system can be solved in terms of the 
known boundary conditions for the unknown Cp∆ , ( )y

iµ  

and ( )z
iµ . 

Lifting surface pressure distribution Cp∆  can be inte-
grated to give the lifting surface contributions to the aero-
dynamic parameters of interest (aerodynamic coefficients, 
generalized forces, etc.). 

The forces on the bodies are determined in a more com-
plicated manner. Every lifting surface box Cp∆ , every im-

age ( )y
iµ  and ( )z

iµ , every slender body axis doublet ( )y
sµ  

and ( )z
sµ  affects the force distribution on bodies. It is 

known from unsteady computational aerodynamics that 
every singularity can be obtained from the point pressure 
doublet whose normal wash flow field is obtained from the 
standard lifting surfaces kernel K . Pressure coefficient 

( , , )Cp x y z  at point ( , , )x y z on the body surface due to 
point pressure doublet of the strength ( , , )Cp ξ η ζ∆ A∆  in 
point ( , , )ξ η ζ can be obtained by relation: 

 ( , , )Cp x y z = ( , , )
4

Cp Aξ η ζ
π

∆ ∆  ( )Ma xeιλ ξ−

N∂
∂ Re

R
ιλ−⎛ ⎞

⎜ ⎟
⎝ ⎠

(5) 

In the above equation: 
− Ma  is free stream Mach number, 

− 2R = 2)( ξ−x + 2(1 )Ma− 2 2( ) ( )y zη ζ⎡ ⎤− + −⎣ ⎦ , 

− λ = 2(1 )
Ma

U Ma
ω
−

, 

− N  is the unit vector in the direction of the doublet. 
The term ( , , )Cp ξ η ζ∆ A∆  is the total pressure doublet 

strength of lifting surface box of area A∆  in which lifting 
pressure coefficient is ( , , )Cp ξ η ζ∆ . An equivalent point 

pressure doublet is assumed to act in 1
4 -mid chord box’s 

point of lifting surface element. The finite length of body 
doublet ξ∆  is obtained by two point pressure doublets per 
each body element. The first is located at the leading edge 

of the element and has the strength 2Ue
ιω ξ

µ
∆

, and the second 

at the trailing edge of the strength 2Ue
ιω ξ

µ
∆−

− . 
Eq. (5) must be integrated over the whole body surface 

to the obtain forces acting on the body due to point doublet 

located at ( , , )ξ η ζ . Then the effects of all point pressure 
doublets must be summed to obtain total forces on the 
body. Integration of body force is given in [2] in detail. 

Longitudinal derivatives 
Generally, aircraft lift zC  and pitch moment mC  coefi-

cients can be represented by the Mac Laurent series: 
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In (6) and (7), α  is aircraft angle of attack, q  is aircraft 

pitch velocity ( q = θ ), where θ  is pitch angle over air-
craft’s center of gravity (cg) and l  is reference length, usu-
ally mean wing aerodynamic chord macl . The total refer-
ence angle of attack mα  can be obtained as a linear combi-
nation of all kinematic effects involved: 

 
0

2 2

2 2

2 2

...2 4 4

m m m m mq m
all controls

mm m
all controls

ql l
U U

l l l
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α δ α
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∑
∑

  

Based on relations (6) and (7), in aircraft control theory 
longitudinal aerodynamic derivatives can usually be di-
vided into: 
− steady longitudinal derivatives ⇒  zC α , mC α , zqC , mqC , 

− unsteady longitudinal derivatives ⇒  zC α , mC α , zqC , 

mqC , zC α , mC α . 
In eqs. (6) and (7), the influences of slat deflections 

slatδ , flap deflections flapδ , symmetrical aileron deflec-

tions symm
ailδ , elevator deflections elevδ  and symmetrical 

rudder deflections symm
ruddδ  (if fins are positioned out of air-

craft symmetry plane) can be incorporated especially for 
calculation of the steady longitudinal derivatives. It should 
be mentioned that the aerodynamic forces on control sur-
faces strongly depend on their boundary layers. As in the 
used methods viscosity effects are neglected, derivatives 
with respect to δ  and δ  will give only trends to accurate 
values. 

The steady coefficients 0zC  and 0mC  are the aerody-
namic coefficients for zero angle of attack ( 0α = ). They 
are usually determined apart from longitudinal dynamic 
analysis. Values of these coefficients are dominantly influ-
enced by viscousity effects and certainly determined on the 
wind tunnel tests. Of course, one can use semi-empirical 
methods or CFD programs (for 0α = ) to evaluate 0zC  and 

0mC , but obtained results are not reliable in many cases. 
However, for classical general configurations the coeffi-
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cients 0zC  and 0mC  are small relative to the other parts in 
(6) and (7), so their influence can be neglected. 

Generally speaking, aerodynamic stability derivatives 
are determined in s s sX Y Z  stability axis system, while aero-
dynamic forces and moments are calculated in aerodynamic 
axis system a a aX Y Z . The aerodynamic system is colinear 
with the velocity coordinate system v v vX Y Z . The axises of 
aerodynamic system are opposite to the axises of velocity 
system va xx −=( ; va yy −= ; )va zz −= , when the 
motion of aircraft is in a straight line. All of the three sys-
tems have the same origin in the center of gravity cgC of 
aircraft structure. All the above mentioned coordinate sys-
tems are represented in Fig.4. In connection with relation 
(6), it is necessary to outline that s v az z zC C C= = − . 

 

Figure 4. Used coordinate systems 

In the reference condition the aX  - axis is parallel to air-
speed U , but departs from it, sX  - axis is moving with the 
airplane during a disturbance. That means that the angle of 
attack sα , defined as the angle between the sX  - axis and 
the direction of U , is not necessarily identical to absolute 
value of the angle of attack aα α= , used in aerodynamic 
calculations. The axis aX  is in direction of the undisturbed 
flight path, while sX  - axis is oscillating with rigid air-
plane. Clearly, sα  represents the disturbance from an aero-
dynamic state α . As small disturbances have been as-
sumed, simple conversion rules between the stability and 
the aerodynamic axis systems for symmetric motions are: 

 

z
s s s a a a

mac

s s s a a a

hX Y Z ik X Y Zl

X Y Z q ik X Y Z

α θ

θ

⇒ − = + ⇐

⇒ − = ⇐
  

In the stability axis system sα  - variation is equivalent to a 
variation of down wash of the airplane. So, it is equivalent 
to the angle of attack to be prescribed in the methods used 
in this paper, where the aerodynamic axis system is used. A 
q  -variation, as defined in the stability axis system, is felt 
by the airplane as linearly varying down wash in the aero-
dynamic system. 

As it is said in the introduction of this paper, concept of 
integration of unsteady aerodynamic loads is used, so ob-
tained lift zC  and pitch moment mC  coefficients are com-
plex numbers. These complex coefficients are connected to 
(6) and (7) by relations: 

 ( )t
z zC e C eιω= ℜ ; ( )t

m mC e C eιω= ℜ  (8) 

In order to calculate unsteady longitudinal derivatives, 
three general configuration motions are of interest. The first 
is quasi-steady harmonic change of attack angle, the second 
is slow steady pitch and the third is aircraft quasi-steady 
harmonic vertical translation: 

A1.Quasi-steady harmonic change of the angle of attack 
( , )x t⇒ ; 0 .constα =  

 2
0eιωαα α α ιωα α ω α= ⇒ = ⇒ = − ; (9) 

A2.Steady pitch angle ( )xθ⇒ ; .dq constdt
θ= =  

By introducing a constant pitch angular velocity q , it 
follows: 

 0( ) 2( )
2

cg cg pmac

mac

q x x x x dhql
U U l dxθ
− −

= = ≡  (10) 

For .12
macql
U =  eq. (10) can be integrated: 

 
2

0
0

.2( ) ( )
.1p cg cg

p
mac mac

dh x x x x
hdx l l

− −
= ⇔ =  (11) 

It is clear that 0 0pdh dt = . 
A3.Quasi-steady harmonic vertical translation ( )zh t⇒  ; 

0zdh dx =  

 
0 ;t

z z z z z z z z
mac

mac

kh h e h h U h hU l
lk U

ιω ωιω α α ι ι

ω

= ⇒ = ≡ ⇒ = =

=
(12) 

Angle zα  is the angle of attack (from stability axis system) 
induced by quasi-steady, harmonic, vertical, small ampli-
tude oscillations zh  relative to the path of aircraft motion. 
In the relation (12), k  is reduced frequency. 

As in the steady calculations harmonic vertical transla-
tion does not exist and vs. in the unsteady calculations 
steady pitch doesn’t exist, the cases A2. and A3. can be 
treated as one case. 

In the flutter calculation the boundary conditions can be 
obtained from the shapes of the normal modes of the air-
craft structure (deflections and slopes of mode shape). In, 
for example [7], it is shown that the boundary condition – 
normalized downwash on each lifting surface or body’s ele-
ment is: 

 
( )

0 0 0
0

0

1 ;

( , , , ) , ,

j j j j
j j

i

i
i

t
i j j j j j j

w dh dh dh
w hU dx U dt dx U
h x y z t e h x y z eιω

ωι= = + = +

⎡ ⎤= ℜ ⎣ ⎦

; (13) 

In eq. (13), the index j  is the number of element and the 
index i  is the normal mode number. 

Using the same idea, in order to calculate the previously 
mentioned longitudinal derivatives, seven harmonic rigid 
body (quasy-steady or steady) motions of the general con-
figuration, instead of normal modes, have to be incorpo-
rated: 

B1. Quasi-steady harmonic change of the angle of attack 
In developed software 0 0.1α =  is the default value, as it 

is acceptable in the used linear theories. 
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− On lifting surface j -th element in point ( , , )x y z  

   ( )10 0( , , ) coscg jh x y z tg x xα γ= − ; 10
0 cos j

h
tgx α γ

∂
= −

∂
 

Variable jγ  is dihedral angle of j -th lifting surface 
element. 

− On image body axis j -th element in midpoint ( , , )x y z  
in vertical direction 

( )10 0( , , ) cgh x y z tg x xα= − ; 10
0

h
tgx α

∂
= −

∂
 

B2. Steady pitch and quasi-steady harmonic vertical 
translation  

In developed software 0.12
macql
U =  and ma0.1 2

c
z

lh =  are 

default values, as they are acceptable in the used linear 
theories. 
− For steady pitch on lifting surface j -th element in point 

( , , )x y z , it follows 

( )
2

2

0 ( , , ) 0.1 coscg
j

mac

x x
h x y z l γ

−
= ; 20 0.2 coscg

j
mac

x xh
x l γ

−∂
=

∂
  

On lifting surface j -th element in point ( , , )x y z  in 
quasi-steady harmonic vertical translation  

                    20 ( , , ) cosz jh x y z h γ= − ; 20 0
h
x

∂
=

∂
 

− On image body axis j -th element in midpoint ( , , )x y z  
in vertical direction for steady pitch, it follows: 

         
( )

1

2

0 ( , , ) 0.1 cg

mac

x x
h x y z l

−
= − ; 10 0.2 cg

mac

x xh
x l

−∂
=

∂
 

On image body axis j -th element in point ( , , )x y z  in 
quasi-steady harmonic vertical translation in vertical di-
rection  

                           20 ( , , ) zh x y z h= − ; 20 0
h
x

∂
=

∂
 

B3. Steady slat’s deflection 
The default slat deflection is 0.1slatδ = . Only lifting sur-

face elements on the wing’s slats are deflected. In any slat 
control point ( , , )kj kj kjx y z , it follows: 

( )30 , cosarm
slat kj k slot slath x xδ λ= − ; 30 cosslat slat

h
x δ λ

∂
=

∂
 

In the above relations, ,
arm
k slotx  is distance from control point 

to slat rotation axis and slatλ  is the swept angle of slat rota-
tion axis. On all the other elements, meaning on all the 
other lifting surface elements and image bodies elements 

30 0h =  and 30 0
h
x

∂
=

∂
. 

B4. Steady flap’s deflection 
The default flap deflection is 0.1flapδ = . Only lifting 

surface elements on the wing’s flaps are deflected. In any 
flap control point ( , , )kj kj kjx y z  it follows: 

  ( )40 , cosarm
flap kj k flap flaph x xδ λ= − ; 40 cosflap falp

h
x δ λ

∂
=

∂
 (14) 

In eq. (14), ,
arm
k flapx  is the distance from control point to flap 

rotation axis and flapλ  is the swept angle of flap rotation 
axis. On all the other elements, meaning on all the other 
lifting surface elements and image bodies elements 40 0h =  

and 40 0
h
x

∂
=

∂
. 

B5.Steady symmetric aileron’s deflection  
If ailerons have different up and down deflection angles, 

any combination of their deflections can be obtained as the 
sum of symmetrical and antisymmetrical deflections. 

( );
1
2

symm updown
ailail ailδ δ δ= + ; ( )1

2
upanti down

ail ail ailδ δ δ= −  

The default symmetric aileron deflection is 0.1symm
ailδ = . 

Only lifting surface elements on wing’s ailerons are de-
flected. In any aileron control point ( , , )kj kj kjx y z  it follows: 

( )50 , cossymm arm
kj k ail ailailh x xδ λ= − ; 50 cossymm

ailail
h
x δ λ

∂
=

∂
 

In the above relations, ,
arm
k ailx  is the distance from control 

point to aileron rotation axis and ailλ  is the swept angle of 
aileron rotation axis. On all the other elements, meaning on 
all the other lifting surface elements and image bodies ele-

ments 50 0h =  and 50 0
h
x

∂
=

∂
. 

B6.Steady elevator’s deflection 
The default symmetric elevator deflection is 0.1elevδ = . 

Only lifting surface elements on the tail’s elevator are de-
flected. In any elevator control point ( , , )kj kj kjx y z  it fol-
lows: 

 ( )60 , cosarm
elev kj k elev elevh x xδ λ= − ; 60 coselev elev

h
x δ λ

∂
=

∂
(15) 

In eq. (15), ,
arm
k elevx  is the distance from control point to flap 

rotation axis and elevλ  is the swept angle of elevator rota-
tional axis. On all the other elements, meaning on all the 
other lifting surface elements and image bodies elements 

60 0h =  and 60 0
h
x

∂
=

∂
. 

B7.Steady symmetric rudder’s deflection 
If aircraft’s fin is out of configuration symmetry plane 

then steady aerodynamic derivatives for rudder symmetric 
deflection can be obtained. Usually in this case general con-
figuration incorporates two fins out of aircraft’s symmetry 
plane. The default symmetric rudder deflection is 

0.1symm
ruddδ = . Only lifting surface elements on the fins’ rud-

ders are deflected. In any rudder control point ( , , )kj kj kjx y z  
it follows: 

( )70 , cossymm arm
kj k rudd ruddruddh x xδ δ= − ; 70 cossymm

ruddrudd
h
x δ λ

∂
=

∂
 

In the above relations, ,
arm
k ruddx  is the distance from control 

point to rudder rotation axis and ruddλ  is the swept angle of 
rudder rotation axis. On all the other elements, meaning on 
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all the other lifting surface elements and image bodies ele-

ments 70 0h =  and 70 0
h
x

∂
=

∂
. 

Substituting (9) and (10) into (8) the following can be 
obtained: 

 
( )

( )

0

0

;z z z zq

m m m mq

C C k C C

C C k C C

α α

α α

α ι

α ι

= + +⎡ ⎤⎣ ⎦

= + +⎡ ⎤⎣ ⎦

 (16) 

Taking ( )zm Cℑ  and ( )mm Cℑ  from relations (16) it 
follows: 

0

1 z
z zq

CC m Ckα α= ℑ − ; 
0

1 m
m mq

CC m Ckα α= ℑ −  

Steady longitudinal derivatives zC α , mC α , zqC  and mqC  
can be determined from all over configuration’s aerody-
namic loadings integration in steady flow condition ( 0)k =  
by introducing (9) and (10) into (13). 

In order to account unsteady longitudinal derivatives 
zC α  and mC α , it is necessary to introduce (11) into (8). 

Then: 

 

2 3

2 3
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Taking ( )zm Cℑ  and ( )mm Cℑ  from relations (17) it 
can be obtained: 
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For determination of unsteady derivatives, it is necessary 
to develop (6) and (7) in the Mac Laurent series of higher 
order and it follows: 
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In (18) only zqC  and mqC  are unknown. So, taking 

( )ze Cℜ  and ( )me Cℜ  from (18) it can be found: 
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Examples 
Two examples from the well known software 

NASTRAN are tested. The first example was case HA21A 

for steady longitudinal aerodynamic derivatives, and the 
second was the case HA75H for unsteady flow. 

Case HA21A 
The case is taken from [3]. Forward-Swept-Wing (FSW) 

airplane with coplanar canard-wing configuration was 
tested in the trimmed sea level steady flight at Mach 9.0 . 
The model is idealized as shown on Fig.5. 

The wing has an aspect ratio 4.0 , no taper, twist, cam-
ber, or incidence relative to fuselage, and a forward sweep 
angle of 30o . The canard has an aspect ratio 1.0 , and no 
taper, twist, camber, incidence, or sweep. The chords of 
both the wing and canard are 3050,00  [mm], and reference 
length is equal to the wing mid aerodynamic chord 

3050,00macl = [mm]. The half-span model of aircraft is di-
vided in 32 equal panels (8 span-wise, 4 chord-wise) on the 
wing and 8 equal panels (2 span-wise, 4 chord-wise) on the 
canard. The fuselage length is 9150,00  [mm]. Aerody-
namic forces on the fuselage are neglected.  

The aerodynamic coordinate system is located in the be-
ginning of the fuselage in coplanar plane of wing-canard 
configuration. Center of gravity is 4575,00 [mm] behind 
aerodynamic coordinate system origin in mid point of ca-
nard root-chord. 

 

Figure 5. The example HA21A idealization 

The comparison of results from [3] and DERIV are 
given in Table 1. Steady derivatives czC δ  and cmC δ are re-
lated to canard deflection cδ . 

Table 1. Comparison of the results for the example HA21A 

Software zC α  mC α  zqC  mqC  czC δ  cmC δ  

NASTRAN [3] -5.0711 -2.8712 -12.0746 -9.9549 -0.2461 0.5715 
DERIV -5.0710 -2.8710 -12.0740 -9.9540 -0.2461 0.5715 

Based on the results given in Table 1, steady longitudinal 
aerodynamic derivatives from NASTRAN and DERIV are 
in good agreement. 

Case HA75H 
The case is taken from [5] and [6], and its geometry form 

NASTRAN. Typical transport aircraft’s wing was tested in 
unsteady flow at Mach 0.8  at the sea level. Geometry of 
the wing is given on Fig.6. The wing has an aspect ratio 
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8.0 , taper 0.25tip rootl l = , no twist, camber, or incidence 
relative to fuselage, and the leading edge sweep angle of 
33.1142 . The sweep angle of the wing mean aerodynamic 
chords’ line is 30 . The pitch axis of the wing includes 
point at 4macl . In the wing’s symmetry plane origin of 
pitch axis is at 827.35 [mm] behind the leading edge of the 
wing’s root chord. The half-span model of wing is divided 
in 75 panels (15 equal span-wise, 5 equal chord-wise). 

In [6] and DERIV moments’ derivatives are calculated 
for pitch axis located in wing symmetry’s plane at 4macl . 
As in [5] pitch axis was in leading wing edge in its symme-
try plane, it was necessary to recalculate moments’ deriva-
tives. If 1( )mC ∗  and 2( )mC ∗  are moments’ derivatives for 

longitudinal location of pitch axis 1x  and 2x , respectively, 
then they are correlated using relation: 

( ) 1 2
2 1( )m m z

mac

x xC C C l∗ ∗ ∗
−= +  

 

Figure 6. The example HA21H idealization 

In the Table 2 calculated steady and unsteady longitudi-
nal aerodynamic derivatives are given, taken from [5], [6] 
and DERIV. Unsteady derivatives are compared for re-
duced frequency (2 ) 0.010.mack l Uω= =  The data marked 
as (*) in the Table 2 is not represented in [5] or [6].  

Table 2. Comparison of the results for the example HA75H 

 [5] [6] DERIV 

mC α  (*) - 5.8490 - 5.8455 

mC α  (*) - 0.5643 - 0.5847 

zqC  (*) - 5.9360 - 5.9978 

mqC  (*) - 3.2050 - 3.2887 

zC α  12.5300 12.5400 12.4325 

mC α  0.8504 0.8744 0.8980 

mqC  -16.4000 (*) -16.3317 

mqC  (*) (*) 0.7749 

zC α  94.7000 (*) 93.7748 

mC α  11.6375 (*) 11.1347 

Based on the Table 2, the results for HA75H obtained 
from [5], [6] and DERIV are in good agreement.  

Conclusion 
A concise overview of the developed numerical proce-

dure and test results of new software DERIV, for calcula-
tion of longitudinal aerodynamic derivatives for general 
configurations, are given in the paper.  

The contributions of the research given can be seen in 
the detailed numerical development of the selected method 
and in the development and testing of the software DERIV. 

The developed software DERIV is tested through 
NASTRAN cases HA21A and HA75H. The obtained re-
sults for DERIV are in good agreement to NASTRAN, [5] 
and [6]. 

In the future, DERIV software ought to be tested in cases 
from the engineering practice. 
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Razvoj softvera za proračun uzdužnih aerodinamičkih derivativa 
podzvučnih aviona 

Uzdužni aerodinamički derivativi subsoničnih aviona proizvoljne konfiguracije mogu se izračunati (proceniti) ko-
rišćenjem metoda konačnih elemenata baziranih na metodi rešetke dubleta (Doublet Lattice Method - DLM), teoriji 
vitkih tela (Slender Body Theory -- SBT) i metodi zamena (Method of Images -- MI). Primenom navedene metodolo-
gije razvijen je softverski paket DERIV. Rezultati dobijeni programom DERIV testirani su na primerima HA21A i 
HA75H iz NASTRAN-a. Postignuto je dobro slaganje rezultata iz DERIV-a, NASTRANA-a, [5] i [6]. 

Ključne reči: aerodinamika, nestacionarna aerodinamika, aerodinamički derivativi, uzdužna stabilnost,  
podzvučni avion. 
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Le développement du logiciel pour calculer les dérivatifs 
longitudinaux aérodynamiques non-stationnaires des avions 

subsoniques 
Les dérivatifs longitudinaux aérodynamiques non-stationnaires des avions subsoniques de configuration arbitraire 
peuvent etre calculés par l’application de la méthode des éléments finis basés sur la méthode de grille des doublets 
(Doublet Lattice Method-DLM), théorie des corps élancés (Slender Body Theory-SBT) et méthode de substitutions 
(Method of Images-MI).En appliquant la méthodologie citée on a développé un progiciel  DERIV.Les résultats obte-
nus par le programme DERIV ont été testé sur les exemples HA 21A et HA75H de NASTRAN.Un bon accord a été 
réalisé entre les résultats obtenus par DERIV et par NASTRAN de [5] et [6]. 

Mots clés: aérodynamique, aérodynamique non-stationnaire, dérivatifs aérodynamiques, stabilité longitudinale,  
avions subsoniques. 

Razvitie programmnogo obespe~eni} dl} neustoj~ivwh, 
prodolxnwh a&rodinami~eskih derivativov dozvukovwh 

samolëtov 

Neustoj~ivwe, prodolxnwe a&rodinami~eskie derivativw dozvukovwh samolëtov proizvolxnoj 
komponovo~noj shemw mogut bwtx vws~itanw - ocenenw polxzovaniem metoda kone~nwh &lementov 
kotorwe baziruyts} na metode re{ëtki dubletov, na teorii gibkih tel i na metode zame|eni}. 
Primeneniem privedënnoj metodologii razvils} novwj paket programmnogo obespe~eni} DERIV.  
Rezulxtatw  polu~enwe programmoj DERIV sravnivanw s obrazcami NA21A i NA75N iz programmw 
NASTRAN. Dostignuto horo{ee soglasovanie rezulxtatov. 

Kly~evwe slova: a&rodinamika, neustoj~iva} a&rodinamika, a&rodinami~eskie derivativw, prodolxna} 
ustoj~ivostx, dozvukovoj samolët. 

 

 
 


