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The analysis of behaviour of thin-walled elements subjected to
dynamic loads
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The methods of calculation and analysis of thin-walled elements with variable and different shapes of the cross sec-
tions subjected to dynamic loads are presented in this work. A particular attention is paid to the influence of the
stresses caused by bimoments and specific elastic and inertial loads during the oscillations of the elements. The com-
parative analysis of the behavior of the elements of different cross section shapes is done. The methods of the frequent
analysis of the behavior of the elements and possibilities of improving the structure from the point of view of its
strength are presented. All calculations are done using numerical methods with either self made or existing algo-

rithms for the numerical analysis.
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Introduction

N the work is solved problem of behavior complex
loaded thin-walled elements with variable cross-section

under dynamic loads and possibilities of improving the

structure from the point of hypotheses resistance. The basic

hypoteses are:

a) thin-walled sticks theory of opened and closed one-cell
and many-cell linear variable cross-sections;

b) behavior of thin-walled structures under time variable
concentric loads;

¢) neglecting the influence of transverse forces and inertia
of rotation cross-section on the oscillations of a struc-
tural element;

Established system of differential equations are solved us-

ing numerical methods. The numerical methods which are

used to solve the system are:

- Finite difference method with backward scheme;

- Runge-Cutta method;

— Various interpolation methods (spline etc.).

The influence of specific parts in the system of differential
equations loaded oscillations is analyzed in the work. Also, the
influence of deplinacy of cross-section on the stress of the
elements for characteristic shape of profile is shown. The ways
for improving structures from the base of resistance are given.

Statical analysis of thin-walled structures
The analysis of thin-walled sticks is based on the follow-
ing hypotheses about the deformation of a stick [1]:

a) the shape of a cross-section remains the same during the de-
formation;
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b) the slide in the middle plain is minor.

In order to analyse the deformations of the middle line
points of profile, the following system of coordinates was
adapted:

'}/

Figure 1. Definition of the coordinate system

Also, the system of main coordinates £ and 7 and the
coordinates of the pole &£, and 77, has to be established. For
the analysis of the stress, the following hypotheses apply [5]:
c) the perpendicular stress o, =o is equally distributed

through the thickness of the wall;

d) the tangent stress 7, is equal to the sum of the stress

T, =T,+7,.

Tanget stress 7, on the cross-section is distributed as in

torsion. The tanget stress 7,, (Fig.2) is a stress caused by

curving of the cross-section, and it can be assumed from the
relation (1).
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Figure 2. The tangent stress 7,
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Diferential equations of equilibrium of the stick in any
system of coordinates is obtained from the conditions of
equilibrium of the elements of the stick (Fig.3).

o
—re i
Z & J g 4 M
m(jtﬁe%f}d 2 + ot
A \ Z e
A% A
%R ——
i
¥ 92,

Figure 3. Inside forces on the element of a stick

System of differential equations of equilibrium of the
stick in the system of the main coordinates has the follow-
ing form [1]:

EAw"—i—J.pzds =0

L

El.n j
[

L

azyds q,=0

@
=0

EL0" —GLO" - I%wds —m=0
L

The first equation determines the longitudinal movements
w(z) due to the axial force, the second and the third de-

scribe the movements &(z) and 7(z) of the main pole on

area sectorial. The fourth equation describes the torsion of
the stick around the main pole, caused by the transversal

forces and the torsion moment (m) distributed along the stick.

Characteristic of the stick with closed many-cell cross-
section (Fig.4)
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Figure 4. “i-cell” separeted

The stream of tangential stress through the walls of
many-cell cross-section is calculated on the bases of the
algebric equations [2]:

I D _ | _L(i=12,..,n
24 (771'1'% kaQkJ_l(kzl,z,m,m) (3)
n - entire number of cells in the cross-sections,

A7 - the area surrounded by the i-cell contour.
The coeficients 77; and 7, are:

n,l=<j5t( (i=1.2m)

mo= [ s te=12,m) @

Sik

s; - entire closed countor of the i-cell

s;x - part of the contour s; which is the same for i and
neighboring k-cell (Fig.4.).
The unknown g; has the form:

— _ 49
qi - GHI (5)

where are:
q; - the course of sliding down the i-cell countor

6" - unique angle of torsion
G - modul of sliding
The torsion moment of inertia is:

L=2) 43, (6)

When ¢; and I, are known, the course of sliding can be
determined [2]:

M, _ .
inthi @i=1,..,n)

t

q[,k =dqi —qk (l = ls"w”) s (k = 19"°3m) ) (7)

as well as the stress of sliding

7, =%(i=l,...,n)

i
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rip = Lk = 1,.n), (k= 1,...m) (8)

Lik

Dynamical analysis of thin-walled structures

To solve the problem of oscillations of elements with
thin-walled profile, the starting point is D’Alambert’s
method, dynamical problem regarded as statical, with
forces of inertia added to elastic forces. The movements
w,&,n and @ should be shown as functions of two vari-

ables: axis z and time ¢. Appropriate mathematical opera-
tions applied:
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Where:

a,, a, - the coordinates of main pole, in a special case
when the main pole conforms with the center of inertia of
the cross-section of the stick (a, =a, =0),

A - the area of the cross section of profile,
E,G -modules of elasticity and sliding of the material,

I.,1, - moment of flexion,

1, - the torsion moment of inertia,

1, - the sector’s moment of the profile of inertia,
r - distance, r = +Ja? + a_ﬁ and

P - specific gravity of material.

The first equation in this system describes free longitu-
dinal oscillations of the stick, the second and the third de-
scribe the transversal oscillations in the main planes and the
fourth describes the torsion oscillations around the main
pole of the cross-section of the stick.

To further analyze the system we could adopt the follow-
ing assumptions:

a) pressure force P acts on the stick,
b) special load effects the thin-walled stick, with compo-
nents ¢,,q, and m (moment of torsion) distributed

along the stick,
c) cross-section of the stick is variable along the coordinate
z. The geometric values are variables such as /. (z);

1,(2);1,(z); A(2)); a.(z); a,(z) and r(z).

072

)2—’7 (2.0)

2 2
+pA(z)%§7+pA(z>ax<z)%—P<z,
0 S| & 0* &
az|:E1() }GZ{ }() }

Py 520 2
+pA(z)—§+pA(z)a (z)i—P( [)6 c

g[ El(z )}—a{ Iz )}

2 0% 0 0% 0
—az{plw(z)atz}+pA(z)r2(z)at2+ (10)

=q,(z,1)

oz

2 2
+pA(2)a, ()5S = pd(D)a () S L = miz)

System of equations is nonlinear, non-homogenous and
non-stationary system of partial differential equations with
contour conditions depending on the loads and reliance.
The solution of the shown system of equations for defined
beginning and contour conditions gives the functions of

movements (deformations): &(z,t), n7(z,¢) and 0(z,t). If
the functions of movements and function of pressure force
P(z,t) are known, as well as the function of geometric
characteristic along the stick change, the functions for the

inside forces and stress depending on coordinate z and time
t can be determined:

- moment of flexion around the main axes & and 7
(M, M),
~ bimoment B(z,t),

- moment of torsion and the torsion moment of deplination
(M ts M @ ) )

- entire moment of torsion (M,, =M +M,),

- the perpendicular stress from the longitudinal force and
moment of deflection and the perpendicular stress from
bimoment o, (z,7), o(z,1),

- the transversal forces and entire transversal stress
(T 51 )’ 4

— the transversal stress from the transversal forces
7(T;),7(T,) and

- the transversal stress caused by torsion moment and the
torsion moment of deplination 7 (M, ),z (M,).

Solving the system of differential equation of
compulsory oscillations
The solution of the system of differential equations are

functions of two variables in the system of coordinates z
and t or 3-D areas. Dividing the domain of the function so-
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lution with the directions ¢ =¢ (Fig.5) families of curves
with one variable are obtained:

! Ap=luk
bk n
i=3:n
_ ik
_ t,=({-3) p
= i = Function solu-
tions are:
y(z.t)=Y(z)
x(z,t;) = X (z)

= 0(z,1,)=6,(z)

Figure 5. The domain of system solution

The partial equations are approximated after Crank-
Nichols explicit scheme with backward model [2]. Apply-
ing the given approximations on the system of differential
equations 3x(n—3) ordinary differential equations are ob-
tained. Solving them results in families of curves or func-
tions of solution. Certain mathematical operations give the
matrix differential equations for the small and bigger flex-
ion-torsion characteristics. The flexion—torsion characteris-
tics of thin-walled structures are defined in [3,4].

The small flexion-torsion characteristics:

XV + A(2)-X'+B (2)X] +C(2)X/+D(2)X;=
(1)
=G(2)-F(2)
The vectors: X,G and F, and matrix A,B,C,D are de-
fined in the folowing way:

Y; Ay(z) 0 0
Xl.: Xl Alz)=] 0 Ax(z) 0 |;
0; 0 0 4y(2)
By(z) 0 0
B(z)=| 0 Byx(z) 0 |;
0 0 By(2)
Cy(z) 0 0
Ciz)=| 0 Cx(zy O
0 0 Cp(2)
Dy (2) 0 E,(z) G,(2)
D(z)=| 0 Dx(z2) Ex(2)|; G(2)=| Gi(2) | ;
Fy(z) Ep(z) Dy(2) Hy(2))
£, (2)
F(2)=| Fi(2)
Gy(2)

X is the vector of the main pole movement, A,B,C,D
are matrices of geometric characteristics and stiffness of the
stick, vector F defines the variability of loads, and G is
the vector of loading in the given instant.

Similarly, the bigger flexion-torsion characteristics equa-
tionis:

Xi"+As(2) X+ B (2)X]+Cy (2)X] +D; (2)X; +

(12)
+E2(2)0,(2) +F(2) = G2 (2)

A(2)+Co, (D) (2)+ Dy, (DG (2)+ER () X +

+Gez (2)= Hp, (2)

This system of equations (11) and (12) is solved by using
program language MATLAB 4.2.-C with Runge-Cutta
method 5 (predictor-corrector). The entire algorithm of the
solution for the system differential equations is organized
acording to Fig.6.

Opening program for
constructive parameters

Input
parameters

Selection the form of
the cross sections of the
profile

Calculation of geometric
characteristics

Step of integration
and tolerance
i=3,n+3
Boundery conditi- 1 Exterior loading for
ons for =1 | Vv‘ | t=1

Integration of the system of

The matrix of movements
for the first and second par-
tial deductions

The matrix of the prior
xyz values

Movements, inner
forces, moments,
graphs

Figure 6. The global algorithm of the solution

Algorithm of the solution for the small and bigger flex-
ion-torsion characteristic is shown in Figures 7 and 8.
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Figure 7. Algorithm for integration for the small flexion-torsion
characteristic
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Figure 8. Algorithm for integration for the bigger flexion-torsion
characteristic

Exterior load on thin-walled element is defined by functions
q,(z.t), q.(z,t) and m(z,t) representing specific loads on
the element in a point depending on time ¢ (Fig.9).
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Figure 9. Exterior load (forms of loading)

The influence of exterior load in the form of bimoment
has not been considered in this work. If thin-walled element
is loaded by concentric forces and moments (in general case
of time variable) then instead of them in surrounding area, a

constant specific load can be assumed. If the load on the
element is the concentric moment of flexion my and m,, it is
possible to represent them via specific loads around the po-
int under the influence of the moments [5].
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Figure 10. Loaded console with variable cross-section

The most frequent case is a console with variable cross-
section loaded by space system of concentric forces and mo-
ments of flexion and torsion in the main plains (Fig.10). A
typical example of a thin-walled element, dynamically loaded,
are the legs of carriage of an artillery weapon (Fig.11).

The leg of the carriage is regarded as a space console
with a variable cross-section which is loaded with space
system of loads and moments that are variable in time on
one end (Fig.12).
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Figure 12. Loaded space console

Results of calculation and comparative analysis of
compulsory oscillations of thin-walled console with
variable cross-section

The solution of the system of differential equations re-
sults in the vector of movement of the center of inertia in
the system of main coordinates and the angle of rotation of
the cross-section profile depending on the coordinates z and
t. Further more, inner forces, moments and values of per-
pendicular stress are obtained as exits. The exit value are in
the shape of the surface in the space (Fig.13).

Diagram of inner forces and stress result from the calcu-
lated function of the yield (Fig.14), for e.q., the moment of
flexion in the main plain, the moment of torsion and bimo-
ment (Fig.15) and, in (Fig.16), the perpendicular stress and
the stress from bimoment.

The moment of torsion along the time axis, follows the
form of alternation by the moment of bending. Along the
longitudinal coordinate, the moment of torsion is approxi-
matively constant. The value of bimoment is negligible due
to the absence of curving of the cross-section.

The perpedicular stress is calculated for every cross-section
(coordinate z in function of 7). The stresses are calculated for a
chosen point on the contour of the cross-section.

The maximum value of stress due to of the bimoment is

o5 (z.t), , <0,1% from the perpedicular stress o caused
by other effects.

In case of bigger flection-torsion characteristies, the
stress caused bimoment can be neglected.
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In z=2z, =9.5m the perpendicular stress with the strain
gages on the real structure was measured. Four measurements
in the same conditions and the average experimental curve
(Fig.17) were obtained.
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Figure 13. Vector of movement of the center of inertia and the rotation
of profile
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Figure 14. Diagram of the moment of flexion
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Figure 15. Moment of torsion and bimoment
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Figure 16. Perpendicular stress and the stress from bimoment
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Figure 17. Calculated and experimental stress for z =z,

The positive phase displacement of the calculated model
compared to the experimental one is caused by disregarding
the time-reactions of the elements connected to the ob-
served element and oscillate with it, in the calculations.
Displacements are less then 10% of the nominal values and
are in the boundaries of engineering accuracy. The com-
parative results of the maximum functions of the angle of
rotation of the cross-section and the stress are one-cell rec-
tangle (opened - 1 and closed - 2) and the two-cell closed
rectangle - 3 and the one cell opened rectangle - 4 ( calcu-
lated by classical Sain-Venant theory), (Fig.18).
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Figure 18. The comparative results for the stress for the all three profiles
rectangles and z =z,

g
= 2mab
@
£ -4 maf
&
B -6 0x10
s
2 anabd
@
o

v

-1.2x18 stress ‘caused
by bimom ent
B i [l R

A Bxib T T T T T T T )
0.00 0.02 004 0.06 0.08 010 012 0.14 016
time (s)

1 - one-cell triangle; 2 - I profile-classical Sen-Venan; 3 - I profile-
bimoment theory

Figure 19. The influence of bimoment on the perpendicular stress

In the open rectangle an important part is the stress is
caused by bimoment (bimoment theory). For the small flex-
ion torsion characteristics (for I-profile) the influence of
bimoment on the perpendicular stress is extensive (Fig.19).

For the I profile, the stress of bimoment is 30-40% of en-
tire perpendicular stress. This percentage is much bigger in
the points of maximum loads. For the profiles with small
flexion-torsion characteristic, the Sen-Venan’s torsion mo-
ment differs significantly from the external. For a
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console with variable cross-section, the influence of torsion
moment of bending decreases at first and then increases. In
thin-walled elements with variable cross-section the influ-
ence of bending is bigger than for the elements with con-
stant cross-section, either for the maximum or minimum
cross-section.

The elements with variable cross-section where moment
of torsion cannot be disregarded and the flexion-torsion
characteristicis small, bimoment theory aught to be used in
calculations.

The frequent analysis of dynamic behaviour of an
element

Thin-walled element can be regarded as multivariable
inertial-elastic system with a certain number of entries and
exits (Fig.20). Vector of exits in such systems consists of
the time functions of the strain, stress etc. at a centain point

(z=12).

Q) ———»
Qx(t) ———»
My(®® —
Mx(t) ——»
M) ——
P(t) »

—— x(z..h)

EE— y(201t)
——— 0(z..t)

[ o)

Multivariable model
of element

Figure 20. Multivariable model of an element

Assuming that this is a linear and stable multivariable
system n-ordered, the matrix of transfer functions could be
obtained on the bases of the corresponding enter-exit com-
binations using Fourie-transformation.

0.0 1 -
-2.0x1 \

4.0x1 </
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-1.0x1 /

-1.21

exit stress (Pa)
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000 002 004 006 008 010 012 014 0.16
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Figure 21. The exit signal o (z,7) in t-domen

Transforming the enterance vector functions in s-domain
is carried out after the discretisation of the corresponding
continous enterance signal and its Fourie transformation
(Fig.21). In this way, the amplitude spectar for every enter-
ance signal can be obtained. The vector of exit signals in s-
domain is determined as multiplication of the matrix of
transfer functions of the system and the vector of enterance
signals in s-domain (Fig.22).

According to the assumption that the system is linear and
knowing that for such system the principle of superposition

applies, the transfer function A (s) can be determined re-
garding the element as a system with one entry and one

exit, assuming that other enterance signals are equal zero,
for all the combinations of enter once and exit signals.
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Figure 22. The amplitude spectar of the exit signal o (z,t)
Hi;(s)=Y;(s)/Ui(s)
where:

Y; (s) - j-exit signal in s domain
U, () - i-enterance signal in s domain

This transfer function is a function of response of the
system for j-exit signal on Dirach impulse with i entrance
signal in s-domain. With the inverse Fourie transformation

of the transfer function H;
element on the Dirach impulse corresponding enterance sig-
nal is obtained. This action is repeated for all the combina-
tions of the entrance-exit signals. When the matrix of transfer
function is known, a frequent analysis of behaviour of an
element in any case of time-loads is possible by applying
methods of multivariable convolution and deconvolution.

The matrix of transfer functions for an element, can also
be obtained experimentally by measuring impulse re-
sponses of the element for every enterance signal and every
observed exit. In the given example alghoritms for fast Fou-
rie transformation in the program language MATLAB were
used for solving transfer functions.

(s), the time response of the

Conclusion

The solution of the system of differential equations for the
static equilibrium of a differential element of thin-walled
structure for the constant cross-section in the case of constant
space system of forces and moments, the vector of movement
of center inertia of cross-section in the system of the main
coordinates and the angle of rotation of profile around the
center of torsion are obtained. The obtained functions are the
stationary functions of independent variable longitudinal co-
ordinate. The position of the center of sliding influences the
value of torsion moment of bending i.e. additional stress due
to the bimoment. The influence of bending for the element
with variable cross-section is bigger than in the case of an
element with constant cross-section.

The solution of the system of differential equations for
the dynamic equilibrium of a differential element in the
case of variable external system of applied forces and mo-
ments, gives the time functions of the vector of movement
and torsion for every cross-section along the element. In
this case it is possible to examine the influence of variabil-
ity of loads on the functions and the inside forces. The posi-
tion of the main pole of sectoral area (for example), has a
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great influence on the external values.

If the main pole is further from the center of inertia of
cross-section an important increase in time-function re-
sponse of the observed variable is obtained. This increase is
bigger if the function of load is close to impulse function.
In this case the “balance” of profile is proposed. The shown
program model make it possible to examine the influence of
the dimensions of a profile on the behavior of an element
(geometrical dimensions, thickness of walls etc.).

The program model should be annexed with the tests for
the estimation of the stability and convergence of the sys-
tem of compulsory vibrations of differential equations.

(1]
[2]

[3]
(4]
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Analiza ponaSanja tankozidnih elemenata pri dinamickom
opterecenju

U radu su prikazane metode proracuna i analize tankozidnih elemenata promenljivih popre¢nih preseka, razlicitih oblika
profila pri dinami¢kom optereéenju. Posebno je analiziran uticaj napona usled bimomenta i specifi¢nih elasti¢nih i inercijal-
nih opterecenja pri oscilovanju elemenata. Napravljena je uporedna analiza ponaSanja elemenata razli¢itih oblika profila
poprecnog preseka. Prikazane su metode frekventne analize ponasanja elemenata kao i moguénosti poboljSanja konstrukcije
sa stanoviSta otpornosti. Svi proracuni su radeni numeric¢kim metodama, sa kreiranim ili postoje¢im algoritmima numericke
analize.

Kljucne reci: otpornost konstrukcije, dinamic¢ko opterecenje, tankozidni element, sloZeno optereéenje, stati¢cka analiza,
dinamicka analiza, bimoment, moment inercije, sistem diferencijalnih jedna¢ina, numeri¢ke metode.

Analyse du comportemenet des éléments aux parois minces pendant

la charge dynamique

Ce papier présente les méthodes du calcul et les analyses des éléments aux parois minces et aux sections transversales varia-
bles avec de différentes formes de profils pendant la charge dynamique. L’influence de la tension, provoquée par le bimo-
ment et les charges inertieles spécifiques et élastiques pendant I’oscillation des éléments a été particuliérem- ent analysée. Une
analyse comparée du comportement des éléments aux différentes formes de profils de la section transversale a été faite. On a
démontré les méthodes de ’analyse fréquente du comportement des éléments ainsi que les possibilités d’améliora- tion cons-
tructive en ce qui concerne la résistence. Tous les calculs ont été effectués au moyen des méthodes numériques, avec les algo-
rithmes de ’analyse numérique, créés ou déja existents.

Mots clés: résistence de contruction, charge dynamique, élément aux parois minces, charge composé, analyse statique,
analyse dynamique, bimoment, moment d’inertie, systéme d’équations différentielles, méthode numérique

AHann3 IMMOBENCHUS TOHKOCTECHBIX 3JICMCHTOB IIPpH JIPIH&MH‘-IGCKOfI

Harpyske

B 3700 paGoTe TOKa3aHbl METONBI pacdeTa W aHaM3a TOHKOCTEHBIX 3JIEMEHTOB M3MEHYMBBIX HONEPEUHBIX CEUCHWH,
pa3mruHbIX (opM mpocdmwrelt mpH AEHAMUYecKo# Harpy3ke. OcoGEHHO aHANIW3APOBAHO BIWSHWE  HANPSDKCHUS
BCJIC/ICTBEE GMMOMEHTa W CIEIU(PIIECKAX SIaCTHIHBIX W MHEPIHOHHBIX HArpPy30K NPH KONeGaHMA 3JIEMEHTOB. Toxke
TIPOBEIEH CPAaBHATENLHBIH aHAJIM3 MOBETICHMS 3JIEMEHTOB Pa3iIMIHbIX (hopM npocuieli nonepeyHoro cedennst. B pabore
MOKa3aHbI ¥ METONBI JaCTOTHOTO aHAjW3a IOBCHCHWS SIIEMEHTOB, KaK M BO3MOXKHOCTH YJIyUICHWS KOHCTPYKIH CO
CTOPOHBI NMPOYHOCTH. Bee pacdeTsl MpoBefeHbl YHCIEHHBIMA METOAAMH, CO JOOaBICHHEM AOPAOOTAHHBIX WM yXKe
CYIIECTBYIOMIAX aJITOPATMOB THCICHHOTO aHAIIN3a.

Kaiouesvie caosa: ycTONIMBOCT KOHCTPYKIMHM, AMHAMHMYECKAsi HArPy3Ka, TOHKOCTEHBIA 3JIEMEHT, KOMIUIEKCHAs
Harpy3ska, CTaTHYCCKWIi aHamW3, [WHAMW4ecKuli aHanu3, OHMOMEHT, MOMEHT HHEpOWH, CHCTeMa
pudepeHINANIbHbIA yPABHEHNI, YUCTICHHBIE METOJbI.
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