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The analysis of behaviour of thin-walled elements subjected to 
dynamic loads 
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The methods of calculation and analysis of thin-walled elements with variable and different shapes of the cross sec-
tions subjected to dynamic loads are presented in this work. A particular attention is paid to the influence of the 
stresses caused by bimoments and specific elastic and inertial loads during the oscillations of the elements. The com-
parative analysis of the behavior of the elements of different cross section shapes is done. The methods of the frequent 
analysis of the behavior of the elements and possibilities of improving the structure from the point of view of its 
strength are presented. All calculations are done using numerical methods with either self made or existing algo-
rithms for the numerical analysis. 
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Introduction 
N the work is solved problem of behavior complex 
loaded thin-walled elements with variable cross-section 

under dynamic loads and possibilities of improving the 
structure from the point of hypotheses resistance. The basic 
hypoteses are: 
a) thin-walled sticks theory of opened and closed one-cell 

and many-cell linear  variable cross-sections; 
b) behavior of thin-walled structures under time variable 

concentric loads; 
c) neglecting the influence of transverse forces and inertia 

of rotation cross-section on the oscillations of a struc-
tural element; 

Established system of differential equations are solved us-
ing numerical methods. The numerical methods which are 
used to solve the system are: 
− Finite difference method with backward scheme; 
− Runge-Cutta method; 
− Various interpolation methods (spline etc.). 

The influence of specific parts in the system of differential 
equations loaded oscillations is analyzed in the work. Also, the 
influence of deplinacy of cross-section on the stress of the 
elements for characteristic shape of profile is shown. The ways 
for improving structures from the base of resistance are given. 

Statical analysis of thin-walled structures 
The analysis of thin-walled sticks is based on the follow-

ing hypotheses about the deformation of a stick [1]: 
a) the shape of a cross-section remains the same during the de-

formation; 

b) the slide in the middle plain is minor. 
In order to analyse the deformations of the middle line 

points of profile, the following system of coordinates was 
adapted: 

 

Figure 1. Definition of the coordinate system  

Also, the system of main coordinates ξ  and η  and the 
coordinates of the pole pξ  and pη  has to be established. For 
the analysis of the stress, the following hypotheses apply [5]: 
c) the perpendicular stress zσ σ=  is equally distributed 

through the thickness of the wall; 
d) the tangent stress zτ  is equal to the sum of the stress 

z s wτ τ τ= + . 
Tanget stress sτ  on the cross-section is distributed as in 

torsion. The tanget stress wτ  (Fig.2) is a stress caused by 
curving of the cross-section, and it can be assumed from the 
relation (1). 

I 
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Figure 2. The tangent stress wτ  
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Diferential equations of equilibrium of the stick in any 
system of coordinates is obtained from the conditions of 
equilibrium of the elements of the stick (Fig.3). 

 

Figure 3. Inside forces on the element of a stick 

System of differential equations of equilibrium of the 
stick in the system of the main coordinates has the follow-
ing form [1]: 
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The first equation determines the longitudinal movements 
( )w z  due to the axial force, the second and the third de-

scribe the movements ( )zξ  and ( )zη  of the main pole on 
area sectorial. The fourth equation describes the torsion of 
the stick around the main pole, caused by the transversal 
forces and the torsion moment ( )m  distributed along the stick. 

 

Characteristic of the stick with closed many-cell cross-
section (Fig.4) 

 

Figure 4. “i-cell” separeted 

The stream of tangential stress through the walls of 
many-cell cross-section is calculated on the bases of the  
algebric equations [2]: 

 1, 2,...,1 1 1,2,...,2 ii i ik k
i k

i nq q k mA
η η∗
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n    - entire number of cells in the cross-sections, 

iA∗  - the area surrounded by the i-cell contour. 
The coeficients iiη  and ikη  are: 

( 1, 2,..., )( )
i

ii

s

ds i nt sη = =∫  
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s

ds k mt sη = =∫  (4) 

is    - entire closed countor of the i-cell 
,i ks  - part of the contour is  which is the same for i and 

neighboring k-cell (Fig.4.). 
The unknown iq  has the form: 

 i
i

qq Gθ
= ′  (5) 

where are: 
iq   - the course of sliding down the i-cell countor 

θ ′  - unique angle of torsion  
G   - modul of sliding 

The torsion moment of inertia is: 

 *

1

2
n

t i i
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I A q
=
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When iq and tI  are known, the course of sliding can be 
determined [2]: 

( 1,..., )t
i i

t

Mq q i nI= =  

 , ( 1,..., ) , ( 1,..., )i k i kq q q i n k m= − = = , (7) 

as well as the stress of sliding  

( 1,..., )i
i

i

q i ntτ = =  
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Dynamical analysis of thin-walled structures 
To solve the problem of oscillations of elements with 

thin-walled profile, the starting point is D’Alambert’s 
method, dynamical problem regarded as statical, with 
forces of inertia added to elastic forces. The movements 

, ,w ξ η  and θ  should be shown as functions of two vari-
ables: axis z and time t. Appropriate mathematical opera-
tions applied: 
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Where: 
,x ya a  - the coordinates of main pole, in a special case 

when the main pole conforms with the center of inertia of 
the cross-section of the stick ( )0x ya a= = , 
A        - the area of the cross section of profile, 

,E G    - modules  of elasticity and sliding of the material, 
,x yI I   - moment of flexion, 

tI        - the torsion moment of inertia, 
Iω       - the sector’s moment of the profile of inertia, 

r         - distance, 2 2
x yr a a= +  and 

ρ        - specific gravity of material. 
The first equation in this system describes free longitu-

dinal oscillations of the stick, the second and the third de-
scribe the transversal oscillations in the main planes and the 
fourth describes the torsion oscillations around the main 
pole of the cross-section of the stick. 

To further analyze the system we could adopt the follow-
ing assumptions: 
a) pressure force P acts on the stick, 
b) special load effects the thin-walled stick, with compo-

nents ,x yq q  and m (moment of torsion) distributed 
along the stick, 

c) cross-section of the stick is variable along the coordinate 
z. The geometric values are variables such as ( )xI z ;  

( )yI z ; ( )I zω ; ( )A z ); ( )xa z ; ( )ya z  and ( )r z . 
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System of equations is nonlinear, non-homogenous and 
non-stationary system of partial differential equations with 
contour conditions depending on the loads and reliance. 
The solution of the shown system of equations for defined 
beginning and contour conditions gives the functions of 
movements (deformations): ( ), , ( , )z t z tξ η  and ( ),z tθ . If 
the functions of  movements and function of pressure force 
( ),P z t  are known, as well as the function of geometric 

characteristic along the stick change, the functions for the 
inside forces and stress depending on coordinate z and time 
t can be determined: 
− moment of flexion around the main axes ξ  and η  

( ),M Mξ η , 

− bimoment ( ),B z t , 

− moment of torsion and the torsion moment of deplination 
( ),tM Mω , 

− entire moment of torsion ( )tu tM M Mω= + , 

− the perpendicular stress from the longitudinal force and 
moment of deflection and the perpendicular stress from 
bimoment ( ),z z tσ , ( ),B z tσ , 

− the transversal forces and entire transversal stress 
( ), ,T Tξ η τ , 

− the transversal stress from the transversal forces 
( ) ( ),ξ ητ τΤ Τ  and  

− the transversal stress caused by torsion moment and the 
torsion moment of deplination ( ) ( ),tM Mωτ τ . 

Solving the system of differential equation of 
compulsory oscillations 

The solution of the system of differential equations are 
functions of two variables in the system of coordinates z 
and t or 3-D areas. Dividing the domain of the function so-
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lution with the directions it t=  (Fig.5) families of curves 
with one variable are obtained: 

uktt n∆ =  

3 :i n=  

( 3) uk
i

tt i n= −  

Function solu-
tions are: 
( ) ( ), i iy z t Y z=  

( ) ( ), i ix z t X z=

( ) ( ), i iz t zθ θ=  

Figure 5. The domain of system solution 

The partial equations are approximated after Crank-
Nichols explicit scheme with backward model [2]. Apply-
ing the given approximations on the system of differential 
equations ( )3 3x n −  ordinary differential equations are ob-
tained. Solving them results in families of curves or func-
tions of solution. Certain mathematical operations give the 
matrix differential equations for the small and bigger flex-
ion-torsion characteristics. The flexion–torsion characteris-
tics of thin-walled structures are defined in [3,4]. 

The small flexion-torsion characteristics: 
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The vectors: ,X G  and F , and matrix , , ,A B C D  are de-
fined in the folowing way: 
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X is the vector of the main pole movement, , , ,A B C D  
are matrices of geometric characteristics and stiffness of the 
stick, vector F  defines the variability of loads, and G  is 
the vector of loading in the given instant. 

 
 
 

Similarly, the bigger flexion-torsion characteristics equa-
tionis: 
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This system of equations (11) and (12) is solved by using 
program language MATLAB 4.2.-C with Runge-Cutta 
method 5 (predictor-corrector). The entire algorithm of the 
solution for the system differential equations is organized 
acording to Fig.6. 

 

Figure 6. The global algorithm of the solution 

Algorithm of the solution for the small and bigger flex-
ion-torsion characteristic is shown in Figures 7 and 8. 

 

Figure 7. Algorithm for integration for the small flexion-torsion 
characteristic 

Opening program for 
constructive parameters 

START 

Input 
parameters 

Selection the form of 
the cross sections of the 

profile 
Calculation of geometric 

characteristics 

Step of integration 
and tolerance 

i = 3, n + 3 
Exterior loading for 

t = ti 

Boundery conditi-
ons for t = ti 

Integration of the system of 
equations (11) and (12) 

The matrix of movements 
for the first and second par-

tial deductions 

The matrix of the prior 
xyz values  

Movements, inner  
forces, moments, 

graphs 

End 
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Figure 8. Algorithm for integration for the bigger flexion-torsion 
characteristic 

Exterior load on thin-walled element is defined by functions 
( ),yq z t , ( ),xq z t  and ( ),m z t  representing specific loads on 

the element in a point depending on time t  (Fig.9). 

 

Figure 9. Exterior load (forms of loading) 

The influence of exterior load in the form of bimoment 
has not been considered in this work. If thin-walled element 
is loaded by concentric forces and moments (in general case 
of time variable) then instead of them in surrounding area, a 
 constant specific load can be assumed. If the load on the 
element is the concentric moment of flexion my and mx, it is 
possible to represent them via specific loads around the po-
int under the influence of the moments [5]. 

 

Figure 10. Loaded console with variable cross-section 

The most frequent case is a console with variable cross-
section loaded by space system of concentric forces and mo-
ments of flexion and torsion in the main plains (Fig.10). A 
typical example of a thin-walled element, dynamically loaded, 
are the legs of carriage of an artillery weapon (Fig.11). 

The leg of the carriage is regarded as a space console 
with a variable cross-section which is loaded with space 
system of loads and moments that are variable in time on 
one end (Fig.12). 

 

Figure 11. Scheme of legs loading 

 

Figure 12. Loaded space console 

Results of calculation and comparative analysis of 
compulsory oscillations of thin-walled console with 

variable cross-section 
The solution of the system of differential equations re-

sults in the vector of movement of the center of inertia in 
the system of main coordinates and the angle of rotation of 
the cross-section profile depending on the coordinates z and 
t. Further more, inner forces, moments and values of per-
pendicular stress are obtained as exits. The exit value are in 
the shape of the surface in the space (Fig.13). 

Diagram of inner forces and stress result from the calcu-
lated function of the yield (Fig.14), for e.q., the moment of 
flexion in the main plain, the moment of torsion and bimo-
ment (Fig.15) and, in (Fig.16), the perpendicular stress and 
the stress from bimoment.  

The moment of torsion along the time axis, follows the 
form of alternation by the moment of bending. Along the 
longitudinal coordinate, the moment of torsion is approxi-
matively constant. The value of bimoment is negligible due 
to the absence of curving of the cross-section. 

The perpedicular stress is calculated for every cross-section 
(coordinate z in function of t). The stresses are calculated for a 
chosen point on the contour of the cross-section. 

The maximum value of stress due to of the bimoment is 
( )max, 0,1%B z tσ ≤  from the perpedicular stress σ  caused 

by other effects. 
In case of bigger flection-torsion characteristies, the 

stress caused bimoment can be neglected. 
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In 9.5mmz z= =  the perpendicular stress with the strain 
gages on the real structure was measured. Four measurements 
in the same conditions and the average experimental curve 
(Fig.17) were obtained. 

 

 

 

Figure 13. Vector of movement of the center of inertia and the rotation  
of profile 

 

 

Figure 14. Diagram of the moment of flexion 

 

Figure 15. Moment of torsion and bimoment 
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Figure 16. Perpendicular stress and the stress from bimoment 

 

Figure 17. Calculated and experimental stress for mz z=  

The positive phase displacement of the calculated model 
compared to the experimental one is caused by disregarding 
the time-reactions of the elements connected to the ob-
served element and oscillate with it, in the calculations. 
Displacements are less then 10% of the nominal values and 
are in the boundaries of engineering accuracy. The com-
parative results of the maximum functions of the angle of 
rotation of the cross-section and the stress are one-cell rec-
tangle (opened - 1 and closed - 2) and the two-cell closed 
rectangle - 3 and the one cell opened rectangle - 4 ( calcu-
lated by classical Sain-Venant theory), (Fig.18). 

 

 

Figure 18. The comparative results for the stress for the all three profiles 
rectangles and mz z=  

 

1 - one-cell triangle; 2 - I profile-classical Sen-Venan; 3 - I profile-
bimoment theory 

Figure 19. The influence of bimoment on the perpendicular stress 

In the open rectangle an important part is the stress is 
caused by bimoment (bimoment theory). For the small flex-
ion torsion characteristics (for I-profile) the influence of 
bimoment on the perpendicular stress is extensive (Fig.19). 

For the I profile, the stress of bimoment is 30-40% of en-
tire perpendicular stress. This percentage is much bigger in 
the points of maximum loads. For the profiles with small 
flexion-torsion characteristic, the Sen-Venan’s torsion mo-
ment differs significantly from the external. For a  
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console with variable cross-section, the influence of torsion 
moment of bending decreases at first and then increases. In 
thin-walled elements with variable cross-section the influ-
ence of bending is bigger than for the elements with con-
stant cross-section, either for the maximum or minimum 
cross-section. 

The elements with variable cross-section where moment 
of torsion cannot be disregarded and the flexion-torsion 
characteristicis small, bimoment theory aught to be used in 
calculations. 

The frequent analysis of dynamic behaviour of an 
element 

Thin-walled element can be regarded as multivariable 
inertial-elastic system with a certain number of entries and 
exits (Fig.20). Vector of exits in such systems consists of 
the time functions of the strain, stress etc. at a centain point 
( )0z z= . 

 

Figure 20. Multivariable model of an element 

Assuming that this is a linear and stable multivariable 
system n-ordered, the matrix of transfer functions could be 
obtained on the bases of the corresponding enter-exit com-
binations using Fourie-transformation. 

 

Figure 21. The exit signal ( ),z tσ  in t-domen 

Transforming the enterance vector functions in s-domain 
is carried out after the discretisation of the corresponding 
continous enterance signal and its Fourie transformation 
(Fig.21). In this way, the amplitude spectar for every enter-
ance signal can be obtained. The vector of exit signals in s-
domain is determined as multiplication of the matrix of 
transfer functions of the system and the vector of enterance 
signals in s-domain (Fig.22). 

According to the assumption that the system is linear and 
knowing that for such system the principle of superposition 
applies, the transfer function ( )ijH s  can be determined re-
garding the element as a system with one entry and one 
exit, assuming that other enterance signals are equal zero, 
for all the combinations of enter once and exit signals. 

 

Figure 22. The amplitude spectar of the exit signal ( ),z tσ  

( ) ( ) ( ), /i j j iH s Y s U s=  

where: 
( )jY s - j-exit signal in s domain 

( )iU s - i-enterance signal in s domain 
This transfer function is a function of response of the 

system for j-exit signal on Dirach impulse with i entrance 
signal in s-domain. With the inverse Fourie transformation 
of the transfer function ( )ijH s , the time response of the 
element on the Dirach impulse corresponding enterance sig-
nal is obtained. This action is repeated for all the combina-
tions of the entrance-exit signals. When the matrix of transfer 
function is known, a frequent analysis of behaviour of an 
element in any case of time-loads is possible by applying 
methods of multivariable convolution and deconvolution. 

The matrix of transfer functions for an element, can also 
be obtained experimentally by measuring impulse re-
sponses of the element for every enterance signal and every 
observed exit. In the given example alghoritms for fast Fou-
rie transformation in the program language MATLAB were 
used for solving transfer functions. 

Conclusion 
The solution of the system of differential equations for the 

static equilibrium of a differential element of thin-walled 
structure for the constant cross-section in the case of constant 
space system of forces and moments, the vector of movement 
of center inertia of cross-section in the system of the main 
coordinates and the angle of rotation of profile around the 
center of torsion are obtained. The obtained functions are the 
stationary functions of independent variable longitudinal co-
ordinate. The position of the center of sliding influences the 
value of torsion moment of bending i.e. additional stress due 
to the bimoment. The influence of bending for the element 
with variable cross-section is bigger than in the case of an 
element with constant cross-section. 

The solution of the system of differential equations for 
the dynamic equilibrium of a differential element in the 
case of variable external system of applied forces and mo-
ments, gives the time functions of the vector of movement 
and torsion for every cross-section along the element. In 
this case it is possible to examine the influence of variabil-
ity of loads on the functions and the inside forces. The posi-
tion of the main pole of sectoral area (for example), has a 
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great influence on the external values. 
If the main pole is further from the center of inertia of 

cross-section an important increase in time-function re-
sponse of the observed variable is obtained. This increase is 
bigger if the function of load is close to impulse function. 
In this case the “balance” of profile is proposed. The shown 
program model make it possible to examine the influence of 
the dimensions of a profile on the behavior of an element 
(geometrical dimensions, thickness of walls etc.). 

The program model should be annexed with the tests for 
the estimation of the stability and convergence of the sys-
tem of compulsory vibrations of differential equations. 
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Analiza ponašanja tankozidnih elemenata pri dinamičkom 
opterečenju 

U radu su prikazane metode proračuna i analize tankozidnih elemenata promenljivih poprečnih preseka, različitih oblika 
profila pri dinamičkom opterećenju. Posebno je analiziran uticaj napona usled bimomenta i specifičnih elastičnih i inercijal-
nih opterećenja pri oscilovanju elemenata. Napravljena je uporedna analiza ponašanja elemenata različitih oblika profila 
poprečnog preseka. Prikazane su metode frekventne analize ponašanja elemenata kao i mogućnosti poboljšanja konstrukcije 
sa stanovišta otpornosti. Svi proračuni su rađeni numeričkim metodama, sa kreiranim ili postojećim algoritmima numeričke 
analize. 

Ključne reči: otpornost konstrukcije, dinamičko opterećenje, tankozidni element, složeno opterećenje, statička analiza, 
dinamička analiza, bimoment, moment inercije, sistem diferencijalnih jednačina, numeričke metode. 

Analyse du comportemenet des éléments aux parois minces pendant 
la charge dynamique 

Ce papier présente les méthodes du calcul et les analyses des éléments aux parois minces et aux sections transversales varia-
bles avec de différentes formes de profils pendant la charge dynamique. L’influence de la tension, provoquée par le bimo-
ment et les charges inertieles spécifiques et élastiques pendant l’oscillation des éléments a été particulièrem- ent analysée. Une 
analyse comparée du comportement des éléments aux différentes formes de profils de la section transversale a été faite. On a 
démontré les méthodes de l’analyse fréquente du comportement des éléments ainsi que les possibilités d’améliora- tion cons-
tructive en ce qui concerne la résistence. Tous les calculs ont été effectués au moyen des méthodes numériques, avec les algo-
rithmes de l’analyse numérique, créés ou déjà existents. 

Mots clés: résistence de contruction, charge dynamique, élément aux parois minces, charge composé, analyse statique, 
analyse dynamique, bimoment, moment d’inertie, système d’équations différentielles, méthode numérique 

Analiz povedeni} tonkostenwh &lementov pri dinami~eskoj 
nagruzke 

V &toj rabote pokazanw metodw ras~eta i analiza tonkostenwh &lementov izmen~ivwh popere~nwh se~enij,  
razli~nwh form profilej pri dinami~eskoj nagruzke. Osobenno analizirovano vli}nie  napr}`eni} 
vsledstvie bimomenta i specifi~eskih &lasti~nwh i inercionnwh nagruzok pri kolebanii &lementov. To`e 
proveden sravnitelxnwj analiz povedeni} &lementov razli~nwh form profilej popere~nogo se~eni}. V rabote 
pokazanw i metodw ~astotnogo analiza povedeni} &lementov, kak i vozmo`nosti ulu~{eni} konstrukcii so 
storonw pro~nosti. Vse ras~etw provedenw  ~islennwmi metodami, so dobavleniem dorabotannwh ili u`e 
su|estvuy|ih algoritmov ~islennogo analiza. 

Kly~evwe slova: ustoj~ivostx konstrukcii, dinami~eska} nagruzka, tonkostenwj &lement, kompleksna} 
nagruzka, stati~eskij analiz, dinami~eskij analiz, bimoment, moment inercii, sistema 
differencialxnwj uravnenij, ~islennwe metodw. 
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