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and Random Inputs 
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The algorithms based on the transition matrix and quaternion concept were developed for determination of the vehi-
cle’s attitude. They are constraint-preserving integrators and overcome the difficulty of some published algorithms 
which need first, second and third derivatives of vehicle’s angular rates. The effects of quantization of the gyroscopes 
impulse on the accuracy of the body attitude were studied and two types of estimators were proposed to estimate a 
vehicle’s attitude if the integrated angular rate is corrupted with uniformly distributed random noise. A series of nu-
merical experiments were conducted to quantify the proposed estimators for coning motion with different motion’s 
frequencies. The proposed estimators are useful for the specified domain of the frequency of motion and sampling 
rate. 
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Nomenclature 
1Ab  – vector b  with components in 1A  frame

2
1 2

A
A Aω  – angular rate of 2A  frame relative to 1A

frame expressed with components in 2A
frame 

⊗  – quaternion multiplication operator 
0 1 2, ,q q q  and 3q  – four quaternion elements 
q  – column matrix of quaternion elements 

[ ]T0 1 2 3q q q q=q  

3q  – column matrix of quaternion vector
elements [ ]T3 1 2 3q q q=q  

b
ibω  – angular rate of b  frame relative to i

frame expressed in b  frame 
ϕ  – rotation angle vector 
α  – vector of incremental gyroscope angles 

Definition of important matrices 

( )A×ω  – skew symmetric matrix with compo-
nents of ω  in A  frame 
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0 -
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- 0
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A A
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z y

z x
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ω ω
ω ω
ω ω
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⎢ ⎥
⎣ ⎦

 

Superscripts 
~ – approximated values 
^ – estimated values 

Abbreviations 
INS – inertial navigation system 
SDINS – strap down inertial navigation system 

DCM – direction cosine matrix 
i – inertial reference frame 
b – body reference frame 

Introduction 
HE primary functions executed in the INS computer are 
the angular rate into attitude integration function (de-

noted as attitude algorithms), use of the attitude data to trans-
form measured acceleration into a suitable navigation coor-
dinate frame where it is integrated into velocity and integra-
tion of the navigation frame velocity into position (denoted 
as velocity and position algorithms). Thus three integration 
functions are involved: attitude, velocity, and position, each 
of which requires high accuracy to assure negligible error 
compared to inertial sensors accuracy requirements. 

Strapdown analysts have focused on the design of algo-
rithms for the attitude integration function.  

Wilcox in 1967 [1] developed quaternion and direction 
cosine matrix algorithms for a digital computer and he 
found that the quaternion algorithms require less computer 
time and give less truncation error than the corresponding 
direction cosine matrix algorithms when it used in appro-
priate algorithm.  

Due to the computer throughput limitations a two speed 
approach was proposed by Savage in 1966 for the attitude 
integration function whereby the attitude updating opera-
tion is divided into two parts: a simple high speed first or-
der algorithm portion coupled with a more complex moder-
ate-speed higher order algorithm portion whose input was 
provided by the high speed algorithm. 

Bortz in 1970 [2] has developed a differential equation for 
the orientation vector relating the body frame to a chosen 
frame. He found that the time derivative of this vector is the 

T
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sum of the inertially measurable angular rate and of the iner-
tially non-measurable non-commutatively rate (coning) vec-
tor which causes the computational problems when numeri-
cally integrated direction cosine matrix. His formulation of 
the orientation vector allows the coning contribution to be 
isolated and treated separately and advantageously.  

Miller in 1983 [3] developed application to the SDINS 
attitude problem of the rotation vector concept. He obtained 
a solution for the rotation vector and updated the attitude 
quaternion separately.  

The direction cosine matrix algorithms are used in many 
aerospace systems to transform vectorial quantities from 
one reference frame to another. Due to the computer errors 
and errors introduced by mathematical algorithm the or-
thogonality property of DCM will be destroyed and should 
be restored. Itzhack in 1969 [4] introduced three orthogo-
nalization techniques to correct errors in the computed 
DCM and restore the orthogonality property. In [5] the 
same author proposed iterative optimal orthogonalization of 
the DCM using the directional derivative method. By ap-
plying this method the closed form solution of the problem 
of finding an optimal orthogonal matrix is easy derived. 

An algorithm for solving the DCM by using digital dif-
ferential approach was given by Bodanskiy in 1974 [6]. In 
order to integrate the differential equations of a rigid body 
angular motion given by the DCM two types of digital pro-
cedures were used. The first is digital computer of general 
type with constant sampling interval and variable magni-
tude of the increments in angular position of the rigid body. 
And the second is the digital differential approach when the 
increments of the rigid body attitude are constant and the 
sampling time is variable. The estimations of the errors for 
these two types of algorithms were developed in the case of 
arbitrary angular motion. 

Savage in 1998 [7] used the two speed approach where 
an analytically exact equation is used at moderate speed to 
update the attitude parameters with input provided from a 
high speed algorithm measuring the dynamic angular rate 
and acceleration effects with the parameter update time in-
terval (coning effect). 

Waldmann in 2002 [8] investigated a variety of attitude 
determination algorithms using DCM, quaternion and rota-
tion vector as attitude parameters to access the tradeoffs be-
tween computational complexity and accuracy when it used 
for terrestrial navigation. He found that in terms of naviga-
tion errors the relative quaternion parameterization is the 
most adequate for pure inertial terrestrial navigation under 
coning motion conditions. The same conclusion was ob-
tained by Miller in 1983 [3]. 

Friedland in 1978 [9] presented basic equations of 
SDINS using quaternion for attitude determination along 
with the resulting equations for error analysis. His equa-
tions were mechanized in inertial reference frame which is 
widely used in space flight application.  

Shibata in 1986 [10] introduced the SDINS errors equations 
based on quaternion for terrestrial navigation where the Earth 
rotation should be considered. These equations will contribute 
greatly to construction of hybrid navigation systems. The op-
timal control of the propagation of the quaternion errors in 
spacecraft navigation was given by Vathsal [11] where the of 
normalization of quaternion is required to meet the constraint 
of unity condition. His algorithm can be implemented without 
increasing very much the computer loading. 

Because the closed from solution of the quaternion 
propagation differential equation is unattainable this differ-
ential equation should be integrated numerically. One of the 

methods is by using the transition matrix approach given by 
Chelnokov in 1977 [12]. 

Mayo in 1979 [13] developed the transition matrix for the 
calculation of the relative quaternion between body and a ro-
tating reference frame (non-inertial frame). This matrix is 
function of the angular rate of the reference frame given with 
components in same system, and the absolute angular rate 
presented with components in the body reference frame. In 
this case it wasn’t necessary to determine transformation ma-
trix from body frame to the reference frame for the integra-
tion of the differential equations for the relative quaternion. 

Chiou and Yan in 2001[14] derived generalized con-
straint-preserving integrators for solving quaternion equa-
tions. This family of time integrators was based on the 
property of the skew symmetric matrix. Their proposed 
forth order algorithm has a very high computational cost 
since it needs to compute the second derivative of the angu-
lar rate. This difficulty can be overcome using the proposed 
quaternion algorithm in terms of transition matrix and the 
given expressions of the second derivative of the angular 
rate in terms of gyroscope outputs. 

The main aim of this paper (part of [18]) is to develop a 
comprehensive approach to design of the principal software 
algorithms utilized in modern day strapdown inertial navi-
gation systems in the presence of noise: integration of angu-
lar rate into attitude. 

Differential equation of a quaternion and its 
transition matrix 

In order to use the quaternion attitude representation it is 
necessary to solve the following differential equation (Tit-
terton, [15], page 48) 

 1
2 q= ⊗q q p  (1) 

where qp  is the quaternion representation of the body an-

gular rate b
ib=p ω  and it has the following form 

 
TT0 b

q ib= ⎡ ⎤⎣ ⎦p ω  (2) 

The eq.(1) may be expressed in the following matrix 
form 

 1
2=q W q  (3) 

where 

 

0
0

0
0

x y z

x z y

y z x

z y x

ω ω ω
ω ω ω
ω ω ω
ω ω ω

− − −⎡ ⎤
⎢ ⎥−

= ⎢ ⎥−⎢ ⎥
−⎢ ⎥⎣ ⎦

W  (4) 

The equation (4) may be written as  

 ( ) ( )0
(ω )

Tb
ib

b b
ib ib

⎡ ⎤−= ⎢ ⎥
−⎣ ⎦

ωW ω
ω Ω

 (5) 

with the skew symmetric matrix ( )ωΩ  which is 3x3 ma-
trix, that corresponding to the vector cross product 

( )b b
ib ib× =ω p Ω ω p . 
The closed form solution of eq.(3) is unattainable and it 

must be integrated numerically in order to update the qua-
ternion. The signals of the angular rate taken from gyro-
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scopes has form of increments with time step integration of 
∆t  and it is assumed constant. The incremental gyroscope 
outputs for the time step size of ∆t  are 

 
( )*

*

1 ∆1 1

1 2 1
∆

3 1

=
t i t,i+

i+ ,i+
t i t

,i+

α
= α dt

α

+ +

+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

∫α ω  (6) 

where *t  is the mean point for the interval of updating the 
quaternion. It is necessary to find algorithm for the solution 
of eq.(3) with time step size equal to 2 ∆tH s=  where s is 
equal to 1,2,3, and depends on the algorithm order. 

If the initial time for integration of eq.(3) is 0t  and the 
initial value of the quaternion is 0 0( )t =q q , then the value 
of quaternion at any time ( )tq  in the time interval defined 
by the time limits, 0 0t t t H≤ ≤ + , can be found by the fol-
lowing equation 

 ( ) ( )0 0,t t t=q F q  (7) 

where ( )0,t tF  is the transition matrix of eq.(3). The tran-
sition matrix differential equation has a similar form of 
eq.(3) [17]: 

 ( ) ( )[ ] ( )0 0
1, ,2t t t t t= ωF W F  (8) 

The initial transition matrix is equal to ( )0 0 4,t t =F I , 
where 4I  is 4x4 identity matrix. eq.(7) represents the qua-
ternion updating that accounts for b frame rotation relative 
to frame from its orientation at time 0t  to its new orienta-
tion at time t. This representation can be interpreted as the 
product between two quaternions ( )0,t tq  and 0q . 

Having in mind the rule for the quaternion product given 
in Appendix A by eq.(A.14) the transition matrix ( )0,t tF  
in eq.(9) has the following form 

 ( ) ( )

0 1 2 3

1 0 3 2
0

2 3 0 1

3 2 1 0

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ), ( ) ( ) ( )
( ) ( ) ( ) ( )

f t f t f t f t
f t f t f t f tt t f t f t f t f t
f t f t f t f t

− − −⎡ ⎤
⎢ ⎥−

= ⎢ ⎥−⎢ ⎥
−⎣ ⎦

F  (9) 

or, with rearrangement 

 ( ) ( )0 0 4 3, ( ) ( )t t f t t= +F I W f  (10) 

where [ ]T3 1 2 3( ) ( ) ( ) ( )t f t f t f t=f  and the initial condi-
tions are defined as  

0 0 3 0( ) 1 ( )f t t= =f 0  

 
T2

0 3 3( ) ( ) ( ) 1f t t t+ =f f  (11) 

The last expression of the initial conditions given in 
eq.(11) represents the quaternion unitary condition. For no-
tations simplicity, 0 ( )f t  and 3 ( )tf  were written to represent 

( )0 0,f t t  and ( )3 0,t tf  respectively. 
If the time is equal 0t t H= +  then elements of transition 

matrix will be 0 0( )f t H+  and 3 0( )f t H+ . Having in mind 
eq.(10), the eq.(7) can be transformed for 0t t H= +  into 
the next equation 

( ){

( )

0 0
0 0 4

3 0
T
3 0 0 0

3 03 0 3 0

( )
( )

0 ( ) ( )
( )( ) ( )

q t H f t Ht H
t H q t

tt H t H

+⎡ ⎤ = + +⎢ ⎥+⎣ ⎦
⎫− +⎡ ⎤ ⎡ ⎤+ ⎬⎢ ⎥ ⎢ ⎥+ − + ⎣ ⎦⎣ ⎦⎭f

Iq
f

qf Ω

 (12) 

Development of transition matrix 
For simplicity, a new notation will be used for the matrix 

part in Eqs. (3) and (8) 

 ( ) ( )t t=q A q  (13) 

 0 0( , ) ( ) ( , )t t t t t=F A F  (14) 

where the matrix ( )tA  is given by 

 1( ) ( )2
b
ibt t= ⎡ ⎤⎣ ⎦A W ω  (15) 

In order to find a solution for eq.(14) the method of suc-
cessive approximations will be used for determination of 
transition matrix. If 0t t=  the transition matrix becomes 
unity matrix 

 0 0 4( , )t t =F I  (16) 

The successive approximations for 0( , )k t tF , 
1, 2,3,...k = , will be found from recursive relation 

 ( )0
1 0

d ( , ) ( , )d
k

k
t t t t tt −=

F A F  (17) 

where 1,2,....k =  
By solving the first approximation 0 0( , )t tF  is equal to 

unity matrix 4I . From eq.(11) we can represent 0( , )k t tF  in 
the following form 

 
0

0 4 1 0( , ) ( ) ( , ).
t

k k
t

t t t t t−= + ∫F I A F  (18) 

where 1,2,.k =  
In a such way, the successive approximations are 

0

0 0 4

1 0 4

( , )

( , ) ( ) d
t

t

t t

t t t t

=

= + ∫

F I

F I A  

0 0

0 0 0

2 0 4 4

4

( , ) ( ) ( ) d d

( ) ( ) ( )

t t

t t
t t t

t t t

t t t t t t

t dt t t dt dt

⎛ ⎞
= + + =⎜ ⎟

⎝ ⎠
⎛ ⎞

= + + ⎜ ⎟
⎝ ⎠

∫ ∫

∫ ∫ ∫

F I A I A

I A A A
 

 
0

3 0 4 2 0( , ) ( ) ( , )
t

t

t t t t t dt= + ∫F I A F  (19) 

Finally, the transition matrix becomes 

 
0 0 0

0 4( , ) ( ) ( ) ( )
t t t

t t t

t t t dt t t dt dt
⎛ ⎞

= + + +⎜ ⎟⎜ ⎟
⎝ ⎠

∫ ∫ ∫F I A A A (20) 
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In order to find the transition matrix at the interval time 
[ ]0 0,t t H+  the angular rate will be approximated by Tay-
lor's series. The derivatives of the angular rate and the ma-
trix ( )tA  are determined for the mean value of the interval 

[ ]0 0,t t H+  which is given by 

 * 0 ∆t t s t= +  (21) 

Having in mind that 2 ∆H s t= , the initial and final 
value of the interval [ ]0 0,t t H+  can be given in terms of its 
mean value *t as 

 0 *

0 *

∆
∆

t t s t
t H t s t

= −
+ = +

 22) 

So, if the point of developing ( )tω  into Taylor's series is 
the centre of the interval *t  we can obtain 

 

* *
0

* *
0

* *

* *

1( ) ( )

1( ) ( )

( )
1 ( )2

m
m m

m
m

m m

m
m m

m m

t t tm

t t tm
t

=

=

= −

= −

=

=

∑

∑

ω ω

A A

ω ω
A W ω

!

!  (23) 

where the time t  is within the limits defined as 
* *∆ ∆t s t t t s t− ≤ ≤ +  and the superscript notation m  repre-

sents the order of the derivative. Substituting eq.(22) into eq 
.(20), the transition matrix at the final value of time interval 
becomes 

* * *

* **

∆ ∆ ∆

0 0 4
∆ ∆ ∆

( , )= ( ) ( ) ( )
t s t t s t t s t

t s t t s t t s t

t H t A t dt A t A t dt dt
+ + +

− − −

⎛ ⎞
+ + + +⎜ ⎟

⎝ ⎠
∫ ∫ ∫F I (24) 

Substituting the expressions in eq.(23) into eq.(24) the 
transition matrix 0 0( , )t H t+F can be found using the func-
tions 0 ( )f t  and 3 ( )tf  presented by eq.(9). If the order of the 
algorithm is first order ( 1s = ) then the interval of updating 
quaternion is 

 2∆H t=  (25) 

and two incremental gyroscope outputs around the centre of 
the interval [ ]0 0, 2∆t t t+  are needed for updating. From 
eq.(6) the required gyroscope outputs are given as following  

for 
*

*

01 ( )
t

t t

i t dt
∆−

=− = ∫α ω  

and  

 for 
*

*

00 ( )
t t

t

i t dt
∆+

= = ∫α ω  (26) 

If the algorithm is a second order ( 2s = ), then the inter-
val of the updating quaternion will be  

 4∆H t=  (27) 

In this case four incremental gyroscopes outputs around 
the centre of the interval [ ]0 0, 4∆t t t+  are needed to update 
the quaternion 

 

*

*

*

*

*

*

*

*

∆

1
2∆

0
∆
∆

1

2∆

2
∆

for 2 ( )

for 1 ( )

for 0 ( )

and for 1 ( )

t t

t t
t

t t
t t

t
t t

t t

i t dt

i t dt

i t dt

i t dt

−

−
−

−
+

+

+

=− =

=− =

= =

= =

∫

∫

∫

∫

α ω

α ω

α ω

α ω

 (28) 

Eqs. (26) and (28) represent the gyroscope outputs for 
different types of algorithms. The approach used to develop 
these algorithms is to obtain the values of transition matrix 
elements from the gyroscope outputs and using this transi-
tion matrix to perform the attitude updating by solving the 
quaternion multiplications. 

Transition matrix components ( 0 ( )f t  and 3 ( )tf ) 
The eq.(7) with eq.(9).is the relation for the determina-

tion quaternion which transforms vector from b frame axes 
at time t  to the i  frame axes at time 0t . By using frame 
notation eq.(7) can be written as  

 ( ) ( )
( )0 0( )

0 0( , ) ii t
b t bt t=q F q  (29) 

where 

( )
( )0

0
i
bq  - The quaternion relating b frame at time 0t to the 

i frame at same time 0t  

( )
( )0i t

b tq  - The quaternion relating b frame at time t  to i
frame at time 0t . 

( )0,t tF - The transition matrix defined by 0f and 

[ ]T3 1 2 3f f f=f  in eq.(9) 
By using the quaternion product the eq.(29) can be rep-

resented by chain rule as following 

 ( )
( )

( )
( )

( )
( )0 0 0

0
i i b
b t b b t= ⊗q q q  (30) 

or, in opposite order  

 ( )
( )

( )
( )

( )
( )0 0 0

0
i b i
b t b t b= ⊗q q q  (31) 

The comparison of eq.(30) with eq.(29) having in mind 
eq.(A.14) gives 

 ( )
( ) [ ]0 T

0 1 2 3( ) ( ) ( ) ( )b t
b t f t f t f t f t=q  (32) 

The quaternion ( )
( )0b t

b tq  transforms a vector from b frame 

axes at time t  to the b  frame axes at time 0t and can be 
updated for the body rotations as sensed by the strapdown 
gyroscopes. The quaternion in eq.(32) represents a rotation 
of specified magnitude of φ  about a vector with variable 
direction φ . This attitude quaternion can be given in terms 
of rotation vector [15] 

 ( )
( )0

cos 0.5
sin 0.5b t

b t

φ
φ

φ

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

q φ  (33) 

where the rotation vector is given by 

 [ ]Tx y zφ φ φ=φ  (34) 
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and ϕ  - angle of finite rotation. 
The vector φ  determines the angle of rotation of body 

frame from its position at time 0t  to position at time t .The 
comparison of eq.(32) with eq .(33) under eq.(34) gives the 
elements of the transition matrix as following 

 

0

1

2

3

cos 0.5
sin 0.5 0.50.5
sin 0.5 0.50.5
sin 0.5 0.50.5

x x

y y

z z

f φ
φf f φφ
φf f φφ
φf f φφ

=

= =

= =

= =

 (35) 

It can be shown from eq.(35) that 

 ( )
1

2 2
0 31f = − f  (36) 

where 

 [ ]T3 x y zf f f=f  (37) 

Algorithm for calculation of rotation vector φ  
The general expression for the rate of change of rotation 

vector is given in (Titterton, [15] , page 301) 

   [ ]1 1( )+ ( ( )) ( ) ( ( )) ( ( )) ( )2 12t t t t t t= +φ ω Ω φ ω Ω φ Ω φ ω (38) 

The triple cross product term will be assumed to be small 
enough to be neglected: 

 1( ) ( ( )) ( )2t t t= +φ ω Ω φ ω  (39) 

The angular rate ( )tω  can be approximated by Taylor's 
series 

 ( ) ( )**
1( ) !

mm

m
t t tm= −∑ω ω  (40) 

 ( ) ( ) ( )**
m m t=ω ω  (41) 

where ( )
*
mω  is the m derivative of the angular rate for the 

mean time of the interval estimation. 
In order to estimate the rotation vector φ  from eq.(39), 

the method of successive approximations will be used. Ne-
glecting the cross product in eq.(39) will give the first ap-
proximation as 

 ( ) ( )t t dt≈ = ∫φ α ω  (42) 

Or, substituting ( )tω  from eq.(40) into eq.(42), yields to  

 ( ) ( )
( ) ( ) 1

**
1

1 !
mm

m
t t t

m
+= −

+∑α ω  (43) 

For the time t  in the time interval [ ]0 0,t t H+  
where 2 ∆H s t=  

 0 0 2 ∆t t t s t≤ ≤ +  (44) 

 * *∆ 2 ∆t s t t t s t− ≤ ≤ +  where 1,2,....s =  (45) 

Substituting eq.(42) into eq.(39) and by integration the fol-
lowing results is obtained: 

  
0

0

0 0 0 0 0
1( , ) ( , ) ( , ) ( )2

t H

t

t H t t H t t t t dt
+

+ = + + ×∫φ α α ω  (46) 

where 0( , )t tα  is given by the following expression 

   ( )
( ) 1 1

0 * 0 **
1( , ) ( ) ( )

1 !
m m m

m
t t t t t t

m
+ += − − −⎡ ⎤⎣ ⎦+∑α ω  (47) 

The first approximation eq.(42) is developed as the sum 
of increments in the interval [ ]0 0,t t H+  or 

[ ]* *∆ , ∆t s t t s t− + . This approximation is given by 

 0 0 1( , ) i
i

t H t ++ = ∑α α  (48) 

   ( )
( ) ( ) ( )1 1 1

1 *
1 1 ∆

1 !
m mm m

i
m

i i t
m

+ + +
+ ⎡ ⎤= + −⎣ ⎦+∑α ω  (49) 

By substitute Eqs. (47) and (48) with eq.(49) into eq.(46) 
the following expression for rotation vector is obtained 

 ( )
( ) ( ) ( )

( )
*

*

0 0
1 1 1

*

∆

0
∆

( , )
1 1 ∆

1 !

1 ( , )2

m mm m

i m
t i t

i t i t

t H t
i i t

m

t t t dt

+ + +

+

−

+ =
⎡ ⎤= + − +⎣ ⎦+

+ ×

∑∑

∑ ∫

φ
ω

α ω

 (50) 

The first order algorithm ( 1s = , H = 2∆t ) 
In the case of first order algorithm the angular rate ( )tω  

is for 1m ≤  and it is given by  

 ( ) ( )0 1
** *( ) ( )t t t= + −ω ω ω  (51) 

where  

 

( )

( )

*

0
**

1
*

( )

t t

t
d
dt =

=

=

ω ω
ωω  (52) 

The incremental gyroscope outputs for this algorithm are 
illustrated in Fig.1. 

 

Figure 1. The incremental gyroscope outputs for the algorithm with 1s =  
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The incremental gyroscope outputs are obtained from 
eq.(49) as following  

For 1i = −  (before the mean time *t ) is  

 ( ) ( )0 1 2
0 * *

1∆ ∆2t t= −α ω ω  (53) 

For 0i =  (after the mean time *t  ) 

 ( ) ( )0 1 2
1 * *

1∆ ∆2t t= +α ω ω  (54) 

From Eqs. (53) and (54) the expression for ( )0
*ω  and 

( )1
*ω  can written as 

 
( ) ( )
( ) ( )

0
0 1*

1 2
1 0*

1∆ 2
∆

t

t

= +

= −

ω α α

ω α α
 (55) 

By using (52) the expression for the rotation angle [50] 
becomes: 

 
*

*

∆0

0 0 0 1 0
1 ∆

1( , ) ( , ) ( )2

t i ti

i t i t

t H t t t t dt
+=

=− −

+ = + + ×∑ ∫φ α α α ω (56) 

The solution of eq.(56) gives the components 0f  and 
, ,x y zf f f  for eq.(35) that are identical to Eqs.(B.1) and (B.3). 

The second order algorithm ( 2s = ,H = 2∆t ) 
The angular rate ( )tω  is given for 3m ≤ : 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )2 30 1 2 3
* * ** * * *

1 1( )= 2 6t t t t t t t+ − + − + −ω ω ω ω ω (57) 

where 

 

( ) ( )
( ) [ ]

*

0
**

* ( )
m

m
m

t t

t
d t
dt =

=

=

ω ω

ω ω  (58) 

The incremental gyroscope outputs for this algorithm are 
illustrated in Fig.2. 

 

Figure 2. The incremental gyroscope outputs for the algorithm with 2s =  

The incremental gyroscope outputs are illustrated in 
Fig.2 and they are given as follows 

 

( )
( ) ( ) ( )

( )
( ) ( ) ( )

( )
( ) ( ) ( )

( )
( ) ( ) ( )

3
1 1 1

1 *
0

3
1 1 1

0 *
0

3
1 1 1

1 *
0

3
1 1 1

2 *
0

1 1 2 ∆
1 !

1 0 1 ∆
1 !

1 1 0 ∆
1 !

1 2 1 ∆
1 !

m mm m

m

m mm m

m

m mm m

m

m mm m

m

t
m

t
m

t
m

t
m

+ + +
−

=

+ + +

=

+ + +

=

+ + +

=

⎡ ⎤= − − −⎣ ⎦+

⎡ ⎤= − −⎣ ⎦+

⎡ ⎤= −⎣ ⎦+

⎡ ⎤= −⎣ ⎦+

∑

∑

∑

∑

α ω

α ω

α ω

α ω

 (59) 

The system of four equations in eq.(4.139) gives the so-
lution for four unknowns parameters ( )( )* , 0,1,2,3m m =ω  in 
terms of 1 0 1 2, , ,−α α α α . Having in mind eq.(57) with solu-
tion for eq.(59) we can determine the rotation angle by us-
ing eq.(50) and 0f  and 3f  for eq.(35) and eventually by 
(B.5) and (B.6). The transition matrix is given by (10) in 
terms of 0f  and 3f . 

Effect of quantization in gyro impulse on the 
accuracy of the body attitude 

The increment of the integrated body angular rate ∆ lα  
of the gyro sensor during the sampling time interval lT  is 
obtained as the sum of the impulses ,δ l iα  of the sensor dur-
ing that period. The increment of integrated body rate is 
given by 

 
0

1

,
11

∆ d d δ
l

l

t t il
b

l ib l i
it tl

t
− =

−

= = = ∑∫ ∫α α ω α  (60) 

where 0i  is the number of impulses during the interval 
∆lT t=  and ,δ l iα is the gyroscope impulse. 

During the period where the incremental measurements 
or impulses are taken from the sensors within the l  cycle a 
displacement between the sum of these impulses and the 
true increments of the integral of the angular rate may exist. 
This displacement might be a source of important errors. 
The physical interpretation of the nature of this displace-
ment and the impulses from the gyroscope sensor are illus-
trated in Fig.3. 

The nature of this effect and the method of reducing the 
associated error will be presented in this section. The fol-
lowing notion will be introduced defining the period of tak-
ing the impulses from the sensors 

1lτ −  the instant of taking the last impulse during the previ-
ous period of l  cycle ( )1lT − . 

lτ  the instant of taking the last impulse during the current 
period of l cycle ( )lT  

 
Figure 3. The impulses of gyroscope sensor during the period of l cycle 
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The measured increment of the angular rate ∆ lα  can 
presented by using the following expression 

 
0 01, ,∆ ∆ δ δl l l i l i−′ ′= + −α α α α  (61) 

where 
∆ lα       - the approximated value of ∆ lα . 
∆ lα       - the exact value of angular rate increment. 

01,δ l i−′α  - the last incremental impulse taken during the  
                pervious l  cycle. 

0,δ l i′α     - the last incremental impulse taken during the  
                current l  cycle. 

The analysis will be done for the case of one component 
only for the reason of simplicity, for example 

01,δ x
l iα −′  and 

0,δ x
l iα′  which will be denoted in the following text as 1δ lα −′  

and δ lα′ by omitting the superscript x and subscript 0i  . 
If the magnitude of the impulse is small enough, it can 

be considered that 1δ lα −′  and δ lα′ are random variables 
with uniform probability density function distribution in the 
following interval depending on the sign of the angular rate  

 [ ], 0 for 0xσ ω− <  (62) 

or  

 [ ], 0 for 0xσ ω >  (63) 

The random variables 1δ lα −′  and δ lα′ are uncorrelated. 
The error in the information on the angular rate xω  during 
the rT  period can be expressed as 

 1δ δ δl l lε α α−′ ′= −  (64) 

This error represents the error of the calculated inertial fra-
me according to the exact position of inertial frame. Since 
the expectations (the mean values) for the components 

1δ lα −′  and δ lα′ are equal to  

 1 1
1E δ sign ( )2l x lσ ω tα − −′ =⎡ ⎤⎣ ⎦  (65) 

 1E δ sign ( )2l x lσ ω tα′ =⎡ ⎤⎣ ⎦  (66) 

then the expectation of the x component of the error is equal to  

 { 1

1

0, ( ) ( ) 0E δ sign ( ) , ( ) ( ) 0
x l x l

l
x l x l x l

ω t ω tε σ ω t ω t ω t
−

−

>=⎡ ⎤⎣ ⎦ − <  (67) 

Simulation of the increments from gyroscope sensors  
The output from the gyro sensors are simulated numeri-

cally by adding the last incremental gyroscope output ( im-
pulse) taken at previous l cycle period 1δ l−′α  to the exact 
value of gyroscope increment  and subtracting the last  in-
cremental gyroscope output (impulse) taken at the current l 
cycle period δ l′α . This approach is given mathematically 
in eq.(61). 

Since the increment ∆ lα  from the gyroscope sensors are 
obtained by summing the gyroscope impulses during the l  
cycle, then l∆α  should be an integer number of impulses. 

The function FIX ( )x  in MatLab was utilized to return an 
integer number of impulses in the quantity 

1∆ ∆ δl l l−′ ′= +α α α .  
The Fig.4 shows the process of the numerical simulation 

of the measured value for the increment of the angular 
rate∆ lα . 

 

Figure 4. Numerical simulation of the measured increment angular rate ∆ lα  

As indicated in Fig.4 the approximated value of the in-
crement of the angular rate is computed by multiplying the 
integer number resulted form the FIX function by the gyro-
scope impulse ( σ ). The last incremental gyroscope output 
obtained in current l cycle δ l′α  is simply computed as the 
difference between ∆ l′α  and∆ lα . The last incremental gy-
roscope output for the current l cycle is assigned to be the 
impulse of the previous l cycle 1δ l−′α . 

Estimation of the increments from gyroscope sensors  
It has been shown that the expectation of the gyroscope 

impulse is dependent on the sign of the angular rate. Sup-
pose that the component of the angular rate xω changes its 
sign during the interval ( )1,l lt t− . There is an error due to 
quantization of the gyroscope increments. The calculated 
reference frame, i.e inertial frame, rotates relative to the ex-
act position around the direction xe  for the angle with 
mathematical expectation of ( )sign x lσ ω t− . If the change 

of the sign exists at other interval ( )1,k kt t− , the calculated 
inertial frame relative to the exact position around xe  for 
the angle with mathematical expectation of ( )sign x kσ ω t . 

Since the direction of xe  is not identical for the in-
stant lt and kt , non-commutativity error appears. This error 
depends on the magnitude of the gyroscope impulse σ  and 
the characteristics of the motion. 

If successive change in the sign of the angular rate is ex-
isted, the non-commutative error will be accumulated for 
long period of time. In order to reduce the non commutative 
error, estimated values of the increments of integrated an-
gular rate will be used instead of approximated values∆ lα . 
This estimated value are denoted as ˆ∆ lα  in the following 
text two types of estimators will be proposed and their algo-
rithms will be developed. 
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Estimator Type-1  
In this type of estimation, the estimated values of the in-

crement of the angular rate ˆ∆ lα  is given for one compo-
nent for simplifying the analysis as 

 ( )1
1ˆ∆ ∆ sign∆ sign∆2l l l lσ= − −+α α α α  (68) 

where  
ˆ∆ lα     - the estimated value of the current increment in the  

              l cycle. 
∆ lα     - the approximated value of the current increment in 
              the l cycle. 

1∆ l−α  - the approximated value of the previous increment  
              in the l cycle. 
σ        - the gyroscope impulse. 

The given algorithm based on eq.(68) provides reduction 
of the error due to quantization of the gyroscope increment. 
The estimator for the gyroscope increments according to 
this algorithm is shown in Fig.5. 

 
Figure 5. Estimator type-1 

Estimator type-2 
This type of estimator is applied on the approximated 

values of gyroscope increments to correct the increment 
components ∆ lα  during the interval [ ]1,l lt t t−∈  by adding 
random variable lu  with uniform distribution of estimated 
impulse σ  and the sign of the last impulse of the gyroscope 
rate 

0, 1δ l i −α .This random variable are uniformly distributed 
within the interval defined as 

0, 1[0 signδ ]l iσ −α .  

 
Figure 6. Estimator type 2 

According to the change of the sign of the last impulse 
the random variable has two possible cases one positive and 
the other is negative. The proposed algorithm was devel-
oped based on the following expression 

 1ˆ∆ ∆l l l l= −+ −α α u u  (69)  

where 1andl l−u u  are uniformly distributed random vari-
ables of last impulse 

0, 1δ l i −α  for the current and the pre-
vious period of l cycle. This estimator of the second type is 
shown in Fig.6. 

Quaternion attitude errors 
The error in computed quaternion δq  may be expressed 

in terms of the exact (true) and computed quaternion ( )
( )0i

b tq  
relating b frame at time t to i frame at time 0t = . 

 ( )
( )

( )
( )0

0
ˆδ b t i

i b t= ⊗q q q  (70) 

If the estimated value of the quaternion is equal to the 
exact value then the estimated attitude of the b frame will 
be identical to real position and the error quaternion will be 
unity quaternion. But, if an error exists in the computation 
the quaternion δq  is no longer equal to unity quaternion. 
The quaternion δq  relates estimated b frame at time t to the 
exact b frame at the same time. In general case the quater-
nion δq  can be presented by 

 0δ 1 2 2
χ= + + χq  (71) 

where 0χ  is a small scalar quantity and χ  is a three dimen-
sional vector. 

The drift is usually defined as the time rate of the error 
as follows 

 
0 0

∆
t t t t

′ ≈ ≈
− −
χ φχ  (72) 

where  

 ( ) ( ) ( )2 2 2
1 2 32 δ δ δq q q= + +χ  (73) 

The small scalar quantity 0χ  is given by 

 ( )0 02 δ 1χ q= −  (74) 

The components 0δq , 1δq , 2δq  and 3δq  are defined 
from the quaternion δq  as 

 [ ]T0 1 2 3δ δ δ δ δq q q q=q  (75) 

Numerical tests and analysis 
The following example will be used for studying and 

analyzing the attitude quaternion updating algorithms. The 
example is representing a coning motion and it is given in 
[12]. This coning motion can be described by the following 
body angular rate equations 

 sin , cos , c constantx y zω a νt ω a νt ω= = = =  (76) 

where a, ν  and c are positive constants. For this numerical 
simulation these constants have the following values a =0.5 
rad/s, ν = 30 rad/s. and c=0.01 rad/s. 

The explicit solution was obtained by solving the time 
rate of change of quaternion equation given in eq.(8) with 
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the initial condition ( ) [ ]T0 1 0 0 0=q  can be found in 
[12] or [16]. 

The effect of the quantization in the impulses from gyro-
scope sensors on the accuracy of the body attitude com-
puted by the developed algorithms will be studied for dif-
ferent values of motion frequencies and updating time step. 
The obtained drift results will be compared with the results 
of exact quaternion solution. The numerical simulation 
were conducted for a motion with frequencies of f: 5, 10, 
20, and 30 Hz and with sampling time steps of ∆ lt T= : 
0.005, 0.01, and 0.02 s and the value of gyroscope impulse 
was chosen to be 2.5x10-6. 

The drift results obtained by both first and second order 
algorithms are shown and discussed. The diagrams of the 
drift rate is given as the ratio of the real value of the drift to 
the reference value of Refχ ′ = 1o/hr = 4.848×10-6 rad/s. 

A comparison of results of the drift obtained using the 
second order algorithm for the three cases (no quantization, 
with quantization effect and estimation by estimator type 1) 
are illustrated in Fig.7. 

For low frequency motion and all sampling rates good 
accuracy can be obtained. If the frequency of motion is 
equal to 2,5Hzf = , the drift rate is increasing sixty times 
with double increase in time step. From the Fig.7 it can be 
seen that the computed drift is increased by increasing the 
frequency of the motion. 

It is shown in Fig.7 that the quantization phenomenon af-
fects the accuracy of the algorithm for all sampling time 
steps if the frequency of motion is less than 10 Hz. As the 
sampling time is increasing the use of the estimation will no 
longer improve the results especially at moderate and high 
motion frequencies. The similar results can be obtained by 
using the estimator type 2. 
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Figure 7. Effect of estimation on the drift using estimator type 1( s =2, 
o

ref 1 /hrχ = ) 

The drift results obtained by the first order algorithm are 
shown in Fig.8. The effect of the quantisation and estima-
tion on the drift is less than in the case of the second order 
algorithm. 

It is interesting to note that by using 2nd order algorithm 
with estimation sampled at medium sampling rate for the 
case of gyroscope with random inputs can produce a rela-
tively similar accuracy of attitude computations obtained by 
1st order algorithm sampled at high sampling rate. 
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Figure 8. Effect of quantization and estimation on the drift (s=1, 
o

ref 1 /hrχ = ) 

The comparison of the computed drift by using the first 
and second order algorithm is shown in Fig.9 in terms of 
time and sampling rate for the frequency of motion 

5Hzf = . The first order algorithm with lT =0.005s gives 
approximately the same results as the second order algo-
rithm for lT =0.01s. 
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Figure 9. Comparison of the drift obtained by first and second order 
algorithms (f=5 Hz ,simulation time 100 s). 

Conclusion 
A set of algorithms based on the transition matrix and 

random inputs were developed. The quaternion representa-
tion was used in the development of these algorithms. 
These algorithms are constraint-preserving integrators, 
where the condition that the magnitude of the quaternion is 
equal to unity, is preserved. They overcome the difficulty 
reported in [14] where the algorithms need to compute the 
second derivative of angular velocity. 

The effects of quantization of the gyroscopes impulse on 
the accuracy of the body attitude were studied. In order to 
estimate the increment of the gyroscope sensors, two types 
of estimators were proposed to estimate the integrated an-
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gular rate corrupted with uniformly distributed random im-
pulses. A series of numerical experiments were conducted 
to quantify the proposed estimators with quantization errors 
for different motion’s frequencies.  

The obtained results of the 2nd order algorithm showed 
that the effect of quanta phenomena was especially obvious 
for the motion of low frequency ( up to 5-10 Hz). The drift 
results showed that the drift was increased as the sampling 
time step increased. The results of the estimation of incre-
mental gyroscope output using estimator type 1 showed that 
as the sampling time step reduced the accuracy of the algo-
rithm improved (the drift was reduced)  especially for low 
and moderate motion frequencies ( 2.5 to 10 Hz). The dif-
ference between two estimators for this algorithm can dis-
tinguished only at low sampling time and low frequency 
motion.  

The 1st order algorithm results have shown that the 
quanta phenomena affects the accuracy only for low fre-
quency motion at low sampling time. The estimation proce-
dure in the case of 1st order algorithm has no effect on the 
improvement of the accuracy. 

Appendix A: The product of two quaternions 
The quaternion product may expressed in matrix form as 

 
0 0 1 2 3 0

1 1 0 3 2 1

2 2 3 0 1 2

3 3 2 1 0 3

s q q q q p
s q q q q p
s q q q q p
s q q q q p

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−= ⊗ = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥

−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

S q p  (A.1)  

where 

 
[ ]
[ ]
[ ]

0 1 2 3

0 1 2 3

0 1 2 3

T

T

T

q q q q
p p p p
s s s s

=
=
=

q
p
S

 (A.2) 

Let us to define new vectors 

 
[ ]
[ ]
[ ]

T
1 2 3

T
1 2 3

T
1 2 3

q

p

S

q q q
p p p
s s s

=
=
=

r
r
r

 (A.3) 

The skew-symmetric matrix which can be defined as  

 
3 2

3 1

2 1

0
( ) 0

0

r r
r r
r r

−⎡ ⎤
⎢ ⎥= −
⎢ ⎥−⎣ ⎦

Ω r  (A.4) 

is used to obtain the vector cross-product 

 ( )× =r t Ω r t  (A.5) 

where 

 [ ]
[ ]

T
1 2 3

T
1 2 3

r r r
t t t

=
=
r
t

 (A.6) 

having in mind Eqs.(A.2), (A.3) and (A.4) the matrix equa-
tion (A.1) can be transformed : 

 

T
00

0 4x4

T
0 0

0 0

0 -
( )

0
( )

q

ps q q

q p

p q q p

ps q

q p
q p

⎧ ⎫⎡ ⎤ ⎡ ⎤⎡ ⎤= = +⎨ ⎬⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦⎩ ⎭
−⎡ ⎤⎡ ⎤= + ⎢ ⎥⎢ ⎥ +⎣ ⎦ ⎣ ⎦

rS I rr r Ω r
r r

r r Ω r r

  

 
T

0 00

0 0

-
( )

q p

s p q q p

q ps
q p
⎡ ⎤⎡ ⎤= = ⎢ ⎥⎢ ⎥ + +⎣ ⎦ ⎣ ⎦

r rS r r r Ω r r  (A.7) 

or, 

 
T

0 0 0

0 0

-
( )

q p

s p q q p

s q p
q p

=
= + +r

r r
r r Ω r r  (A.8) 

Since; 

 T T. .q p p q=r r r r  (A.9) 

and from the rule of vector cross-product  

 q p p q× = − ×r r r r  (A.10) 

the skew-symmetric matrix can follow this rule as  

 ( ) ( )q p p q= −Ω r r Ω r r  (A.11) 

Using Eqs.(A.9) and (A.11), Eq.(A.7) can be rewritten as 

 

T
0 00

0 0
T

0
0 4x4

-
( )

0 -
( )

p q

s p q p q

p

qp p

p qs
q p

qp

⎡ ⎤⎡ ⎤= = =⎢ ⎥⎢ ⎥ + −⎣ ⎦ ⎣ ⎦
⎧ ⎫⎡ ⎤ ⎡ ⎤= +⎨ ⎬⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦⎩ ⎭

r rS r r r Ω r r
rI rr Ω r

 (A.12) 

Substituting pr  and qr form Eq.(A.3) and ( )pΩ r from 
Eq.(A.4) into Eq.(A.12) gives 

 
0 1 2 3 0

1 0 3 2 1

2 3 0 1 2

3 2 1 0 3

p p p p q
p p p p q
p p p p q
p p p p q

− − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−= ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥

−⎣ ⎦ ⎣ ⎦

S  (A.13)  

Equating (A.1) to (A.13) gives 
0 0 1 2 3 0

1 1 0 3 2 1

2 2 3 0 1 2

3 3 2 1 0 3

0 1 2 3 0

1 0 3 2 1

2 3 0 1 2

3 2 1 0 3

s q q q q p
s q q q q p
s q q q q p
s q q q q p
p p p p q
p p p p q
p p p p q
p p p p q

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥

−⎣ ⎦ ⎣ ⎦ ⎣ ⎦
− − −⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥−= ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥
−⎣ ⎦ ⎣ ⎦

S

(A.14) 

Appendix B: Transition matrix elements 

First order algorithm (s=1) 
In the case of first order where 1s =  the maximum order 

of the quantity 3 ( )tf  is 4. It can be shown [16] this quantity 
has the following expression 

 ( )2
3 1 1 0 1

1 1 1( ) 2 48 3t = − + ×f f f α α  (B.1) 

 1 0 1= +f α α  (B.2) 

 
The scalar coefficient can be found according to 

 2 2 40.5
0 3 3 3

1 1(1 ) 1 2 8f = − = − −f f f  (B.3) 

 
The equation (B.3) for 0f  have the error of the order of 

( )6∆t  (time step of incremental for gyroscope output). It 
should be noted that the condition of the magnitude of the 
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quaternion is equal to unity (unitary condition) is included 
in the algorithm by Eq.(B.3). The procedure of normaliza-
tion of quaternion is not required by this algorithm. 

Second order algorithm (s=2) 
The maximum order for this algorithm of the quantity 
( )3 tf  is 6. So, the following expression were obtained 

 1 1 0 1 2−= + + +f α α α α  (B.4) 

 

( )
( )( ) ( )

( ) ( )[ ]

2 4
3 1 1 1

2
1 1 0 1 2

1 0 0 2 2 1 1 1

1 1 1( ) 2 48 3840
11 1
45 120

16
45

t

−

− −

= − + +

+ − + × + +

+ × + × − × + ×

ff f f

f α α α α

α α α α α α α α

(B.5) 

The scalar quantity 0f  can be found according to 

 2 4 6
0 3 3 3

1 1 11 2 8 16f = − − −f f f  (B.6) 
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Algoritmi za određivanje ugaonog položaja besplatformnih 
inercijalnih navigacionih sistema primenom fundamentalne matrice 

kvaterniona i slučajnih ulaznih veličina 
U radu su prikazani algoritmi za određivanje ugaonog položaja objekta koji se zasnivaju na primeni fundamentalne 
matrice kvaterniona. Spadaju u integratore koji obezbeđuju uslov jediničnog intenziteta kvaterniona i prevazilaze te-
škoće nekih od objavljenih algoritama kojima su potrebni prvi, drugi i treći izvod ugaone brzine objekta. Izučavaju se 
efekti kvantifikacije žiroskopskih impulsa na tačnost određivanja ugaonog položaja. Predložena su dva estimatora za 
procenu ugaonog položaja objekta ako su inkrementi ugla opterećeni slučajnim veličinama sa ravnomernom raspode-
lom gustine verovatnoće. Izveden je niz numeričkih eksperimenata u cilju provere opisanih estimatora za slučaj razli-
čite frekvencije konusnog kretanja. Pokazano je da su estimatori efikasni za određeni domen frekvencija kretanja i 
brzina odabiranja mernih signala. 

Ključne reči: mehanika leta, navigacija, navigacioni sistem, inercijalno navođenje, određivanje položaja, estimacija, 
estimator, kvaternion, numerički algoritam 
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Algorithmes pour la détérmination de la position d’angle des 
systèmes de navigation inertiele sans plate-forme par l’application de 

la matrice fondamentale du quaternion et des vitesse d’entrée 
accidentelles 

Ce papier représente les algorithmes de la position d’angle de l’objet  et se basent sur l’application fondamentale de la 
matrice du quaternion. Ils font partie des intégrateurs qui assurent l’intensité unique du quaternion et surmontent, 
les diffucultés de certains algorithmes publiés qui nécessitent la première, la deuxième et la troisième dérivées de la vi-
tesse angulaire d’objet . On a étudié les effets de la quantification des impulsions gyroscopiques sur la précision de dé-
termination de la position d’angle. Deux estimateurs sont proposés pour l’estimation de la position d’angle d’objet en 
cas où les incréments angulaires sont chargés des valeurs accidentelles avec une répartition homogène de la densité de 
probabilité. On a effectué une série d’essais numériques en vue de vérifier les estimateurs décrits dans le cas de diffé-
rente fréquence du mouvement conique. On a démontré que les estimateurs sont efficaces pour un domaine déterminé 
des fréquences du mouvement ainsi que des vitesses du choix des signaux de mesure 

Mots clés: mécanique du vol, navigation, système de navigation, guidage inertiel, précision de position, estimation, es-
timateur, quaternion, algorithme numérique 

Algoritmw dl} opredeleni}  uglovwh polo`enij 
bezplo|adnwh inercialxnwh navigacionnwh sistem pri 

pomo|i primeneni} kvaternarnwh fundamentalxnwh plastin i 
proizvolxnwh vhodnwh dannwh 

V &toj rabote privedenw algoritmw dl} opredeleni}  uglovwh polo`enij obqekta, kotorwe 
obosnovwvayts} na primenenii kvaternarnwh fundamentalxnwh plastin. Oni prinadle`at k integrato-
ram, obespe~ivay|im uslovie edini~noj intensivnosti kvaterniona i perevoshod}t trudnosti kakih-to 
opublikovannwh algoritmov, kotorwm nu`nw pervwj, vtoroj i tretxij vwvodw uglovwh skorostej 
obqekta. Vwu~ivayts} &ffektw kvantovani} giroimpulxsov na to~nostx opredeleni} uglovwh polo`enij. 
Zdesx predlo`enw dve ocenki dl} ocenivani} uglovwh polo`enij obqekta, esli prira|enie ugla usilenw 
proizvolxnwmi veli~inami s ravnomernwm raspredeleniem plotnosti vero}tnosti. Zdesx to`e sdelan 
vwvod celogo r}da ~islennwh &ksperimentov s celxy proverki opisannwh ocenok v slu~ae razli~nwh 
~astot konusnogo dvi`eni}. Zdesx pokazano, ~to ocenki &ffektivnw dl} opredelënnwh oblastej ~astot 
dvi`enij i skorostej vwbirani} mernwh signalov. 

Kly~evwe slova: mehanika polëta, navigaci}, navigacionna} sistema, inercialxnoe navedenie, opredele-
nie polo`eni}, ras~ëtnostx, ras~ët, kvaternion, ~islennwj algoritm 

 


