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In this paper, the methods for solving the two-point boundary value problem for descriptor systems (TPBVDS) are 
presented. To solve this class of systems using the methods mentioned, the system of difference equations with two-
point boundary condition needs to be solved. The importance of these is even more conspicuous considering the fact 
that these systems are often used in precise description of numerous natural phenomena. 
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Introduction 
HE topic of this paper is solving two-point boundary 
value problem TPBVP. In the case of continuous 

systems, this problem appears when attempting to estimate 
the states, and at the same time having unknown parameters 
of the process. Towards the end of the initial phase, the 
origin of the problem in the case of discrete singular 
systems which appears while solving the difference 
equations of states due to the systems matrices is 
considered. In order to solve the problem, it is necessary to 
know the initial conditions for the first equations subgroup, 
and the finite conditions for the other one. That type of 
descriptor systems will be called two-point boundary value 
descriptor systems or TPBVDS. Some areas will be 
followed by proper examples so that the actions can be 
explained in detail. It is essential to keep in mind some 
basic concepts related to discrete systems in order to 
understand the presented material more fully. 

Discrete descriptor systems 
Discrete systems are generally those systems in which 

variables of states take their values only in specific (exactly 
defined) moments of time. Consequently, their 
mathematical models are described by difference equations. 
During an intensive development of computer technologies, 
discrete systems have bigger ingluence and importance in 
every theoretical and practical aspect of automatic control. 
This class of systems can be obtained as the result of 
continuous systems aproximation, mostly for the simulation 
on numerical computers or in the real systems in which 
signal sampler exists. In some other cases there are specific 
components or equipment which first serve one part of the 
system and then the other, so that the system can have a 
discrete nature. Same reasons lead to the existence of 
discrete descriptor systems. 

The general description of mathematical models will be 
given in the following form: 

 ( , ( 1), ( ), (0), ( ), ( ), ( 1), (0)) 0,ik k k k k k+ − =f x x x x u u uK K  (1) 

in references, it is known as implicit discrete system, or: 

 ( , ( 1), ( ), (0), ( ), ( 1), (0)) 0,k k k k k k+ − =f x x x u u uK K  (2) 

 ( ) ( , ( 1), ( ), (0), ( ), ( 1), (0)) 0,i kk k k k k k= + − =x g x x x u u uK K  (3) 

where are, in general, vector functions [ ]( )k ⋅f  and [ ]( )k ⋅g , 
so that: 
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where ( ) ( )k kT=x x  is the system state vector, ( )ku  
control vector, ( )i kx  output vector, T  period, k  sampling 
moment. 

One of the possible canonical form models given by Eqs. 
(2) and (3), when functions [ ]( )k ⋅f  and [ ]( )k ⋅g  are linear, 
is: 

 ( 1) ( 1) ( ) ( ) ( ) ( ) ,E k k A k k B k k+ + = +x x u  (5) 

 ( ) ( ) ( ) ( ) ( ) ,i k C k k D k k= +x x u  (6) 

 0(0) , 0,1, 2, 1,E E k N= = −x x K  (7) 

and belogs to an unstationary, discrete, linear, descriptor 
system. Eq.(5) represents the discrete vector equation of 
state, and eq.(6) is the output equation of the dynamical 
system. The following initial conditions are defined by 
eq.(7). 

Through time, changeable matrices ( )A k , ( )B k , ( )C k , 
( )D k  and ( 1)E k +  have proper dimensions, with the 

matrix which has a constant rank, but must be singular. 
Special description of unstationary singular systems 

T 
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given by Eqs. (5) and (6), can be presented as, Luenberger 
(1977, 1978): 

 1 ( 1) ( ) ( ) ,k k kE k A k B k+ + = +x x u  (8) 

 ( ) ( ) , 0,1, 2, 1,i kk C k k N= = −x x K  (9) 

that enables their presenation in a block-matrix form: 
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 (10) 

with every particular block which has a dimension n n× , it 
is clearly shown that this system of dynamical equations 
can be treated like a large-scale system. Specially, the most 
frequently found case in references, is that the system is 
considered to have vector functons which are linear and 
matrices in the equation of state as in the output equation 
are constant, so that the simpliest matrical description of 
discrete descriptor systems in space of states can be 
obtained, Dai (1989.b): 

 ( 1) ( ) ( ) ,E k A k B k+ = +x x u  (11) 

 ( ) ( ) , 0,1, 2, ,i k C k k= =x x K  (12) 

which will be the subject of research in this paper. 

Nature and characteristics of discrete descriptor systems 
Discrete descriptor systems, given by Eqs. (11) and (12), 

in the mathematical sense, present dynamical systems 
described by combinations of difference and algebraic 
equations, that enable their presentation in a classical form 
by vector difference equations of state and also by the 
usage of standard mathematical methods for their solving. 
Continuous systems, like discrete models, both have 
identical advantages, Bajić (1992.a). 

On the other hand, this class of singular systems has 
many specificities of its own, which are considered through 
questions about the existence and uniqueness of solution, 
property of causality, existence of consistent initial 
conditions which have physical sense, possible 
uncharacteristic matrix of transfer functions, and with other 
questions especially related to the numerical solving and 
realization of these systems. 

All of this is supported by the fact that the existence and 
researching of descriptor systems capture the attention of an 
enormous number of scientists, who actually work on 
system theory and controlling. 

Finally, it is important to emphasize that no matter where 
these efforts were headed in search of its specificities, it 
should be admitted that present general trend of their 
consideration is contained in trying to derive results which 
emanate from general modern theory of systems. This 

becomes much clearer if it is realized that the basic 
solutions of those problems are not in the entire space of 
states, but in some of their subspaces. 

Two-point boundary problem for discrete descriptor system 
with boundary value problem (TBVPDS) 

The class of descriptor systems described by linear 
difference equation of state and system of boundary 
conditions is introduced, whereby matrices E and A are 
singular. Unlike the previous approach, this class of 
systems is solved considered together with boundary 
conditions. In this paper it is shown that it is not possible to 
set arbitrary initial conditions on one hand, and on the other 
to require that the system has unique solution and at the 
same time to be in an adequate form. For this reason, firstly 
it is required that the system be well-posed, in terms of 
existence and uniqueness of solution, and the procedure for 
translating the system to a proper form. All further 
derivations will be based on this assumption. In case of 
TPBVDS ( ), 0,1,k k N=x K , in order to obtain sequence of 
solutions ( ), 0,1,k k N=x K under the effect of sequence of 
inputs ( ), 0,1, 1,k k N= −u K  it is necessary to solve 
difference equation of state with boundary conditions in 
two ending points of the observed interval; namely, to 
know the value of singular vector of state in initial and 
finite moments. In case of these systems, initial conditions 
are marked through the system of boundary values. It is not 
enough to know only the value of the descriptive vector of 
state in one moment in order to obtain a unique solution, 
because of the singularity of the system matrices. It is 
necessary to solve the two-point boundary problem 
(TPBVP) in these systems by using recursive methods, but 
here is one more problem. It is not possible to find the 
solution using simple recursions, because the vector of state 
in a specific moment of time depends on the input over the 
entire interval. Finally, TPBPV for descriptor systems can 
now be precisely defined in the following manner. The 
solution, for the given system of boundary values which are 
related to initial and finite points of the interval where the 
system defined is by the sequence of inputs which are 
known needs to be found. It is obvious that solving this 
problem requires induction of some other notions, where 
some of them are already quoted, like for e.g. well-
posedness system, normalized form etc. In the following 
paragraph notions like: well-posedness system, standard 
and normalized forms will be explained. 

Well-posedness and normalized forms 
The TPBVDS considered in this paper satisfies the 

difference equation: 

 ( ) ( ) ( )1 , 0,..., 1 E k A k B k k N+ = + = −x x u , (13) 

with the two-point boundary condition: 

 ( ) ( )0i fV V N+ =x x v  (14) 

and output: 

 ( ) ( ) , 0,..., k C k k N= =y x  (15) 

where , nR∈x v , and ,m pR R∈ ∈u y . 

As in Luenberger (1978), Eqs. (13) and (14) can be 
rewritten as a single set of equations  

 =Sx Bu  (16a) 
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 ( ) ( )( )0 ,...,T T T N=x x x  (16b) 

 ( ) ( )( )0 ,..., 1 ,T T T TN= −u u u v  (16c) 

where: 

 

0 0
0 0 0

0 0
0 0i f

A E
A E

A E
V V

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥=
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

S

K K K

K K

M O O O M

K K K

K K K

 (17a) 

 ( ),..., ,diag B B I=B  (17b) 

From this is immediately obvious that the well-
posedness of Eqs. (13) and (14) – i.e. the existence of a 
unique solution ( ) , 0,1,...,k k N=x , for any choice of v  
and ( ) , 0,1,..., 1k k N= −u  is equivalent to the invertibility 
of S . Note that invertibility of S  implies that the submatrix 
consisting of all but its last block of rows has full row rank. 
This in turn implies that the necessary condition for well-
posedness is that { },E A  comprise a regular pencil, i.e. that 

E Aα β+  is invertible for some and therefore for most α  
and β . Consequently throughout this paper it is assumed 
that this is the case. 

An important aspect of regular pencils is that they can be 
transformed into a form that greatly simplifies the 
answering of a number of questions.  

Definition. A regular pencil { },E A  is in standard form 
if for some α  and β : 

 E A Iα β+ = . (18) 

Note that any standard linear system (with E=I) is in a 
standard form (take 1α = , 0β = ). Furthermore, any well-
posed TPBVDS can be transformed to the standard form. 
Specifically, find α  and β  so that 0E Aα β+ ≠  and 

premultiply eq.(13) by ( ) 1E Aα β −+ . This does not change 
the system or the state variable ( )kx , but the new E  and 
A  matrices now satisfy eq.(18). 

A pencil in standard form has a number of important 
properties, a few of which are summarized in the following 
result. 

Proposition. Suppose that { },E A  is in the standard 
form. Then: 
(i) E  and A  commute and thus have a common set of 

the generalized eigenvectors (which are referred to us 
generalized eigenvectors). 

(ii) The pencil { },k kE A  is regular for all k > 0. 

(iii) For any , 0k l > , there exist coefficients 0 1,..., nα α −  so 
that 

 
1

1

0

n
k l n i i

i
i

E A A Eα
−

− −

=
= ∑  (19) 

Proof. Suppose without loss of generality that 0α ≠  in 
eq.(18). Then E I Aγ δ= +  where 1/γ α=  and 

/δ β α= − . The commutativity of E  and A  follows 
immediately. The remainder of (i) follows from the fact that 

E  and A  can be put into Jordan form by the same 
similarity transformations. Indeed, the Jordan blocks must 
be of commensurate dimensions, i.e. no block of E  and A  
can straddle rows of several blocks of the other without 
extending to include all of the rows of those blocks. (For 
e.g., two 4 4×  matrices in Jordan form, one with two 2 2×  
Jordan blocks and the other with one 3 3×  and one 1 1×  
Jordan block, do not commute.) 

Assume that E  and A  are in Jordan form. Since { },E A  
is regular, E  and A  cannot have a zero eigenvalue 
associated with a common eigenvector. This in turn implies 
statement (ii). Finally, to prove (iii), take any k lE A  and 
replace E  by I Aγ δ+ . Then, apply the usual Cayley-
Hamilton theorem to all powers of A  higher then 1n − . 
Finally, multiply each kA  in the resulting expression by 

( ) 1n kI E Aα β − −= + . Expanding yields an expression in the 
form of eq.(19). 

Statement (iii), which states that { }1 2 1, ,...,n n nA EA E− − −  

span the same subspace as { }, 0k lA E k l ≥ , is a 
generalization of the Cayley-Hamilton theorem. Note that 
this statement is considerably simpler than those in Lewis 
1983 b, 1984, Mertzios i Christodolou 1986 for pencils not 
in standard form. 

Standard form also provides the following simpler well-
posedness condition.  

Theorem. Suppose that { },E A  is in standard form. Then 
the system Eqs. (13) and (14) is well-posed if and only if: 

 N N
i fV E V A+   (20) 

is invertible. 
Proof. One method for deriving this result is to apply 

row elimination to solve ( )0x  and ( )Nx  from eq.(16). 
Methods similar to this will be used in the next section in 
defining inward and outward processes. In this proof a 
different method that provides some computations that can 
be used immediately is applied.  

To begin, let ω  be any number such that: 

 1 1N NE Aω + +Γ = −  (21) 

is invertible (this can always be done since { 1 1,N NE A+ + } is 
regular).  

Then S  can be expressed as: 

 1 2=S S S  (22) 

 1

0 1 , 1

0 0
0 0

0 0 0

N N N N NN

I
I

I
S S S S−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

S

K K

K K

M M M

K

K

 (23) 

 ( )1 1 1,
0,.., 1,

N k k N k k
Nk i fS V A E V A E

k N
ω− − − + −= + Γ

= −
 (24a) 

 ( ) 1 ,N N
Nk i fS V E V A −= + Γ  (5.12b) 
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 2

0 0
0 0 0

0 0
0 0

A E
A E

A E
E Aω

−⎡ ⎤
⎢ ⎥−⎢ ⎥

= ⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

S

L L

L

M O O O M

L L

L L

 (5.13) 

Note that 2S  is invertible, with: 

 

1 1 1 1 1 1

1 1 2 2 1 1 1

1 1 1 1 3 3 1 2 1
2

1 1 2 2 1 1 1

N N N N

N N N N

N N N N

N N N N

A EA E A E
E A E A E A

E A E E A E A

EA E A E A

ω
ω ω

ω ω ω

− − − − − −

− − − − − −

− − − − − − − −

− − − − − −

Γ Γ Γ Γ⎡ ⎤
⎢ ⎥Γ Γ Γ Γ⎢ ⎥
⎢ ⎥= Γ Γ Γ Γ
⎢ ⎥
⎢ ⎥
⎢ ⎥Γ Γ Γ Γ⎣ ⎦

S

L

L

L

M M M M

L

(26) 

Consequently S  is invertible if and only if 1S  is 
invertible. Examining Eqs. (23) and (24) it can be seen that 
this is the case if and only if the matrix in eq.(20) is 
invertible.  

Definition. The system Eqs. (13) and (14) is in 
normalized form if { },E A  is in standard form and if:  

 N N
i fV E V A I+ = . (27) 

This form is the counterpart of Krener`s (1980, 1981, 
1987) standard form. Note that any well-posed system can 
be put in the normalized form by left multiplication of Eqs. 
(13) and (14). Specifically{ },E A  are first transform  to 
standard form as described previously, to obtain new E  
and A  matrices, and then multiply eq.(14) by 

( ) 1N N
i fV E V A

−
+ to obtain new iV  and fV  matrices 

satisfying eq.(27). From this point on it is assumed that Eqs. 
(13) and (14) is in the standard form. 

Next, note that if eq.(20) is invertible, the inverse of 1S  
has the same form as eq.(23) except that the last block row 
of 1

1
−S  is: 

 ( )1 1 1 1
0, 1, , 1,,...,NN N NN N NN N N NNS S S S S S S− − − −

−− − −   

Using the expressions for 1
1
−S and 1

2
−S  the Green`s 

function solution of Eqs. (13) and (14) can be written down: 

 ( ) ( ) ( )
1

0
,

N
k N k

l
k A E G k l B l

−
−

=
= + ∑x v u , (28) 

where: 

 ( )
( )
( )

1 1

1 1

,
,

   
  

k N k k l k N l
i f

N k k N k l k l
i f

A A E V A V E E E A l k
G k l

E E A V A V E A E A l k
ω

ω ω

− − − − −

− − − − −

− + Γ ≥⎧ ⎡ ⎤⎪ ⎣ ⎦= ⎨ − + Γ <⎡ ⎤⎪⎩ ⎣ ⎦
(29) 

Here ( ),G k l  is called the Green`s function of the 
TPBVDS. When E  and A  are both invertible, eq.(29) can 
be simplified: 

 ( )
1

1

,
,

   
,       

k N k l N N l
f

k N k l l
i

A E V E A l k
G k l

A E V E A l k

− − − −

− − −

≥⎧
= ⎨

≤⎩
 (30) 

For simplicity, in the rest of the paper it is assumed that 
Γ  is invertible for 1ω =  and so eq.(29) is used. This 
assumption is equivalent to assuming that no ( )1N + -th 
root of unity is an eigenmode of the system (where σ  is an 
eigenmode if 0E Aσ − = ). All of the results in the paper 
have obvious extensions to the case of an arbitrary value of 

ω , as ω  must be carried along in the various expressions. 

Example 1 
In this example the normalized form system given by 

following difference state equation is considered: 

 ( ) ( ) ( )
1 0 1 0 0 1 1 0 0
0 0 0 1 0 1 0 0 1 1
0 1 0 0 0 1 0 0 1

k k k
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ = + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x x u  

with system of boundary conditions 

( ) ( )
1 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 1

N
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+ =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

x x v ,  10N =  

0 1

2 9 10

0 1
1 , 1 ,
1 1

2 9 10
1 , 1 , 1
1 1 1

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − = −⎢ ⎥ ⎢ ⎥
− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − = − = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x x

x x xK

 

By simple replacement of the system matrices, of vector 
v , with ω 1=  in Eqs. (28) and (29) it is obtained that 
solution seems  in the space of states as shown in Fig.1. 

Proper time changes, for [ ]0 1 1 TT = − −v  are given in 
Fig.1. 

 

Figure 1. 

Inward and outward processes 
One of Krener`s most important observations was that 

boundary-value systems admit two notions of recursion, 
namely expanding inward from or outward toward the 
boundaries. In this section, the counterparts to these notions 
for TPBVDS are introduced. As it will be shown, the 
possible singularity of both E  and A  leads to several 
differences in the context. 

Each of the processes associated with these recursions 
have interpretations as state processes: the outward process 
summarizes all that is required to know about the input 
inside any interval in order to determine ( )kx  outside the 
interval, while the inward process simply uses input values 
near the boundary to propagate the boundary condition 
inwards. In Krener`s context, the outward process 
represented a jump, i.e. the difference between ( )kx  at one 



82  G.SIMEUNOVIĆ, D.DEBELJKOVIĆ: SOLVING TWO - POINT BOUNDARY VALUE DESCRIPTOR SYSTEMS  

and of any interval and the value predicted for ( )kx  at that 
point given ( )kx  at the other end of the interval and 
assuming zero input inside the interval. In the given context 
it cannot necessarily be predicted in either direction 
(because of the possible singularity of E  and A ) and 
therefore a slightly modified definition of the outward 
process must be used. 

 ( ) ( ) ( )0 , ,  l k l kk l E l A k k l− −= − <z x x  (31) 

Note that this definition agrees with Krener`s if E I= . 
However, in general ( )0 ,z k l  can only be propagated 
outward whereas in Krener`s case the outward process 
could be propagated inwards as well. An explicit expression 
for ( )0 ,z k l , in terms of the inputs between [ ],k l , can be 
obtained by premultiplying (16) by: 

1 1 10 0 0 0k l k l k lA EA E− − − − − −⎡ ⎤⎣ ⎦K K K  

This yields: 

 ( ) ( )
1

1
0 ,

l
j k l j

j k
z k l E A Bu j

−
− − −

=
= ∑  (32) 

There are also the recursive relations: 

 ( ) ( ) ( )0 01, , 1l kz k l Ez k l A Bu k−− = + −  (33) 

 ( ) ( ) ( ), 1 , l k
o oz k l Az k l E Bu l−+ = +  (34) 

Furthermore, as in Krener (1987), it is straightforward to 
show that the four-point boundary-value system: 

 ( ) ( ) ( )1E k A k B k+ = +x x u  (35) 

 ( ) ( )0i fV V N+ =x x v  (36) 

 ( ) ( ) ( )0 ,L K L KE L A K K L− −− =x x z  (37) 

has the same solution as eq.(13-14) for  
[ ] [ ]0, \ 1, 1k N K L∈ + −  (i.e. over [ ]0, K  and [ ],L N ), so 
( )0 ,K Lz  does indeed summarize all we need to know 

about inputs between K and L. 
The inward process ( ),i k lz  can also be defined in a 

manner analogous to that of Krener (1987). Unfortunately, 
in the present context ( ),i k lz  is a complex function of the 
boundary matrices, the boundary value v , and the inputs 
( ) [ ] [ ], 0, 1 \ , 1j j N k l∈ − −u . Specifically, as will be 

demonstrated below, for k<l, ( ),i k lz  has the form: 

      

( ) ( ) ( ) ( ) ( )

( )[ ( ) ( ) ( )

( ) ( ) ]

, , ,

0 1 1

1 1

i i f

kl

k l W k l k W k l l

F k l

l N

= +

= −

+ −

z x x

u u u u

u u v

   K

K

 (38) 

and, in addition: 

 ( )0,i N =z v ( )0,i iW N V= ( )0,f fW N V=  (39) 

 ( ) ( ) ( ) ( )( ), 0 ,..., 1 ,i kkz k k k F N= = −x u u v  (40) 

 

where klF  are linear functions of their arguments. 
Furthermore the TPBVDS  

 ( ) ( ) ( )1E k A k B k+ = +x x u  (41) 

      ( ) ( ) ( ) ( ) ( ), , ,i f iW K L K W K L L K L+ =x x z  (42) 

has the same solution as eq. (13-14) for [ ],k K L∈ , so 
( ),i k lz  does indeed represent an inwardly-propagated 

boundary condition for the original system.  
Let it first be indicated how Eqs. (38), (39) and (40) can 

be computed in a recursive manner. The basic idea here is 
to eliminate the values of ( )kx  near the boundary from 
eq.(16) in order to obtain a reduced set of equations. The 
resulting right-hand side will then involve the remaining 
u `s and a new boundary (see eq.(16c)). Specifically, 
suppose the goal is to propagate one step in from the left, 
i.e. to compute ( )1,i Nz . Note that for S  in eq.(5a) to be 
invertible it is necessary for: 

 
i

A
V
−⎡ ⎤
⎢ ⎥⎣ ⎦

  

to have full column rank. Consequently a block matrix 
[ ]T P  of full row rank can be found so that: 

 [ ] 0
i

A
T P

V
−⎡ ⎤ =⎢ ⎥⎣ ⎦

 (43) 

Premultiplying eq.(16) by the matrix 

 

0 0 0

0 0 0
0 0

I

I
T P

⎡ ⎤
⎢ ⎥
⎢ ⎥Ω =
⎢ ⎥
⎢ ⎥
⎣ ⎦

K

M M M M

K

K

  

then eliminates ( )0x  and leaves the following TPBVDS on 
[ ]1, N : 

 ( ) ( ) ( )1E k A k B k+ = +x x u  (44) 

 ( ) ( ) ( )1 0fTE PV N P TB+ = +x x v u  (45) 

It is easy to see that this system is well-posed, since 
( ) ( ) ( )rank rank rank nΩ = Ω = =S S , and the system is 

defined over an interval with one less time step. The 
boundary matrices in eq.(45) are not necessarily in the 
normalized form, so it is necessary to pre multiply eq.(45) 
by: 

 ( ) 11N N
fTE PV A

−−Λ = +  (46) 

yielding: 

 ( )1,iW N TE= Λ ( )1,f fW N PV= Λ  (47) 

 ( )[ ] ( )1 0 , 0NF P TB= Λ +Λu v v u  (48) 

In a similar fashion the right boundary can be moved 
inward, in this case premultiplying eq.(16) by: 
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0 0 0
0 0 0

0 0 0
0 0

I
I

I
S Q

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

K

K

M M M M

K

K

 (49) 

where [ ]S Q  is a full-rank solution of: 

 [ ] 0
f

E
S Q

V
⎡ ⎤

=⎢ ⎥
⎣ ⎦

 (50) 

It is also possible to obtain a direct rather than a 
recursive expression for the W `s and at the same time to 
expose the relationship between the inward and outward 
processes that will be used later. Using the expression 
eq.(31) for the outward process 0z  and eq.(16) it can be 
written: 

 
( )
( )
( )
( )

( )
( )
( )

1 1

0

0

0

0 0
0 0
0 0

0 0

0 0,
,

,

k k

l k l k

N N

i f

A E
A E

A E
V V

k
k k l
l l N
N

− −

− −

−⎡ ⎤
⎢ ⎥−⎢ ⎥×
⎢ ⎥−
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥× =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦

x z
x z
x z

x v

 (51) 

As was done earlier, a full-rank matrix is constructed:  

 ( ) ( ) ( ), , ,i fT k l T k l P k l⎡ ⎤⎣ ⎦   

so that: 

 ( ) ( ) ( ) 1

0
, , , 0

k

N
i f

i f

A
T k l T k l P k l E

V V

−

−⎡ ⎤
⎢ ⎥⎡ ⎤⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

 (52) 

If eq.(51) is then multiplied by: 

 ( ) ( ) ( ) ( )
0 0 0

,
, 0 , ,i f

I
k l

T k l T k l P k l
⎡ ⎤

Ω = ⎢ ⎥
⎣ ⎦

 (53) 

the following is obtained: 

( ) ( )
( )
( )

( )
( ) ( ) ( ) ( ) ( )

1

0

0 0

, ,

,
, 0, , , ,

l k l k

N
i f

i f

x kA E
x lT k l T k l A

z k l
T k l z k T k l z l n P k l v

− −

−

−⎡ ⎤ ⎡ ⎤ =⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦
⎡ ⎤

= ⎢ ⎥+ +⎣ ⎦

(54) 

Eq.(54) is essentially the result of eliminating all 
variables in eq.(16) other than ( )kx  and ( )lx , by 
propagating outward to summarize all inputs between k and 
l and inward to summarize the effect of the boundary 
condition and inputs from 0 to k and 1 to N. Therefore 
letting: 

 ( ) ( ) ( ) 1
, , ,l N k

i fk l T k l E T k l A
−−Λ = −⎡ ⎤⎣ ⎦  (55) 

it is obtained :  

 ( ) ( ) ( ), , , k
i iW k l k l T k l E= Λ  (56) 

 ( ) ( ) ( ) 1, , , N
f fW k l k l T k l A −= −Λ  (57) 

 
( ) ( ) ( ) ( )[

( ) ( ) ( )
, , , 0,

, 1, ,
i i

f

k l k l T k l K
T k l N P k l

= Λ +
+ + ⎤⎦

z z
z v  (58) 

In continuation the way that shows how these results are 
used for determining the solutions of the system will be 
demonstrated. Three methods will be considered, where one 
is based on the separation of the system in two subsystems, 
so that one is solved by finite forward differences and the 
other by finite backward differences. The other two 
methods are based on direct usage of results given in this 
section. In the first method the inward and outward 
recursive processes are used and in the second only 
outward, while the inward is omitted. Each of these 
methods will be followed by an example as illustration of 
their practical usage. The solution will be given in forced 
working regime with step input change in order to 
understand these methods more fully. If all are considered 
in free working regime, outward process becomes equal to 
zero, regardless of the interval which is referred to. It 
should be emphasized that these methods do not require the 
choice of consistential initial condition, unlike the approach 
when Drazin`s inversion for solving is used.  

Efficient solution of TPBVDS 
Unlike causal systems, the solution of a TPBVDS cannot 

be computed using a simple recursion since the solution 
( )kx  depends on inputs over the entire interval. There are, 

however, several efficient methods which will be described 
in this section. 

Two-filter solution 
In his study, Krener derived a solution by solving his 

continuous-time linear system assuming a zero initial 
condition and then correcting for the actual boundary 
conditions. Since E  and A  may both be singular for a 
TPBVDS, the analogous procedure, first described in 
Nikoukhah et al. (1986), is somewhat more complex it must 
be identified which part of the system can be solved in the 
forward and backward directions. 

From Kronecker`s canonical form for a regular pencil, 
Van Dooren (1979), non-singular matrices T  and F  can 
be found so that: 

 1

2

0
0
I

FET
A

− ⎡ ⎤= ⎢ ⎥⎣ ⎦
 (59) 

 11 0
0
A

FAT
I

− ⎡ ⎤= ⎢ ⎥⎣ ⎦
 (60) 

and all of the eigenvalues of 1A  and 2A  have magnitudes 
no larger than 1. (The decomposition in Van Dooren (1979) 
splits the pencil zE A−  into forward dynamics 
corresponding to a pencil of the form 1zI A− %  and backward 

dynamics corresponding to 1
2Iz A− − %  where 2A%  is nilpotent. 

The only difference in Eqs. (46) and (47) is that the 
unstable forward modes of 1A%  have been shifted into the 
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backward dynamics 2A ). Define: 

 
( )
( )

( )1

2

k
T k

k
⎡ ⎤ =⎢ ⎥⎣ ⎦

x
x

x
 (61) 

Then it is obtained: 

 ( ) ( ) ( )1 1 1 11k A k B k+ = +x x u  (62a) 

 ( ) ( ) ( )2 2 2 21k A k B k= + −x x u  (62b) 

 1

2

B
FB

B
⎡ ⎤ =⎢ ⎥⎣ ⎦

 (63) 

Note that Eqs. (62a), and (62b) are asymptotically stable 
recursions if zE A−  has no zeros on the unit circle. 
Finally, given the transformation eq.(61), the boundary 
condition eq.(14) takes the form: 

 [ ]
( )
( )

( )
( )

1 1
1 2 1 2

2 2

0
0i i f f

N
V V V V

N
⎡ ⎤ ⎡ ⎤+ =⎡ ⎤⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

x x
v

x x
M M  (64) 

 [ ] 1 1
1 2 1 2,i i i f f fV V V T V V V T− −= =⎡ ⎤⎣ ⎦M M  (65) 

Employing the forward/backward representation eq.(62) 
of the dynamics, a general solution to Eqs.(13) and (14) is 
derived as follows. Let 0

1x  denote the solution to eq.(62a) 

with zero initial condition, and let 0
2x  denote the solution of 

eq.(62b) with zero final condition. Then:  

 ( ) ( ) ( )0
1 1 1 10kk A k= +x x x  (66) 

 ( ) ( ) ( )0
2 2 2 20N kk A k−= +x x x  (67) 

Substituting Eqs. (66) and (67) into (64) and solving for 
( )1 0x  and ( )1 Nx  yields: 

 
( )
( )

( ) ( ){ }1 1 0 0
1 1 2 2

2

0
0f iH V N V

N
−⎡ ⎤ = − −⎢ ⎥⎣ ⎦

x
v x x

x
 (68) 

where: 

 
( ) ( )

1 1 1 2 2 2

1 1 1 1

N N
i N i f

N N
i f

H V V A V A V

V T FET V T FAT− − − −

= + + =⎡ ⎤⎣ ⎦
= +

M
 (69) 

Finally, substituting eq.(68) into Eqs. (66) and (67) yields: 

 

( )
( )

( ) ( ) ( )
( )

1 1

2 2
0

1 0 0 1
1 1 2 2 0

1

0
0

0

k

N k

f i

k A
k A

k
H V N V

k

−

−

⎡ ⎤⎡ ⎤ = ×⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤

× − −⎡ ⎤ ⎢ ⎥⎣ ⎦
⎣ ⎦

x
x

x
v x x

x

 (70) 

The solution in the original basis can then be obtained by 
inverting eq.(60). 

Note that the transformed matrices in Eqs. (59) and (60) 
commute and are in fact in a form close to the normalized 
form. However, the full importance of transforming the 
system into normalized form, and in particular its 
implication for a generalized Cayley-Hamilton theorem and 
the resulting form of reachability and observability results, 
has not been previously recognized. Also, the algorithm just 
described provides an equivalent well-posedness condition, 

namely the invertibility of H  in eq.(69). 

Parallel outward-inward solution 
A second efficient algorithm can be constructed by 

noting that the solution ( )kx  can be recovered from the 
outward process 0z  and the inward process iz . For 
simplicity, let it be assumed that N  is odd and that E  and 
A  commute (as they would if Eqs. (13) and (14) is in the 

normalized form). It is then possible to specify a recursive 
algorithm for the computation of ( )0 ,j N j−z  for 

( )0,..., 1 / 2j N= − , starting from the initial condition at the 
centre of the interval (with ( )1 / 2j N= − ): 

 ( ) ( )( ) ( )( )0 1 / 2, 1 / 2 1 / 2N N B N− + = −z u  (71) 

and propagating symmetrically outward from the centre: 

 
( ) ( )

( )
( )

0 0
2 1

2 1

1, 1 ,
1N j

N j

j N j EA j N j
A B j
E B N j

− +

− +

− − + = − +
+ − +
+ −

z z
u
u

 (72) 

Similarly, ( ),i j N j−z  can be computed recursively 
inward from the initial condition: 

 ( )0,i N =z v  (73) 

using a recursive procedure based on that outlined (see Eqs. 
(43), (44), (45), (46), (47), (48), (49) and (50)). 

The solution ( )kx  can then be computed as: 

 

( )
( ) ( ) ( )

( )
( )

12 2

0

, ,
,
,

N j N j

i f

i

j A E
N j W j N j W j N j

j N j
j N j

−− −−⎡ ⎤⎡ ⎤ = ×⎢ ⎥⎢ ⎥− − −⎣ ⎦ ⎣ ⎦
−⎡ ⎤×⎢ ⎥−⎣ ⎦

x
x

z
z

 (74) 

where the inverse on the right-hand side of eq.(74) is 
guaranteed to exist thanks to the well-posedness of Eqs. 
(13) and (14). 

Example 2 
A practical example, will illustrate how to determine the 

solution of TPBVDS in the force working regime, which is 
based on previously presented algorithm. The system given 
by the following state equation and set of boundary 
conditions will be considered.  

 ( ) ( ) ( )1E k A k B k+ = +x x u ,  0,1,2,...,6k =   

 ( ) ( )0i fV V N+ =x x v ,  7N =   

where: 

 
1 0 0
0 0 1
0 0 0

E
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 
0 0 0
0 1 1
0 0 1

A
⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

, 
1 0 1
0 1 1
0 0 1

B
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

,  

 ( )
1
1
1

k
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

u ,  0,1,..., 1k N= −   

 
1 0 0
0 1 0
0 0 1

iV
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 
0 0 0
0 1 7
1 0 1

fV
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

,  
2
8
1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

v   
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First, eq.(5.19) is calculated, which presents external 
recursive process, starting from the centre of the interval 
and computing from outward to boundaries (k is decreasing 
and l is increasing for one step). In this case going from 

( )0 3, 4z  to ( )0 0,7z , the following values are obtained: 

 ( )0

2
3, 4 2

1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

z ,  ( )0

2
2,5 1

1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

z ,  

 ( )0

2
1,6 1

1

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

z ,  ( )0

2
0,7 3

1

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

z   

Then eq.(32) is calculated, representing the internal 
recursive process, starting from the boundaries to the centre 
of the interval (k is increasing and l is decreasing). It is 
necessary to compute ( )0 0,3z , ( )0 0,2z as well, ( )0 0,1z  
and also ( )0 4,7z , ( )0 5,7z , ( )0 6,7z  which are: 

 ( ) ( )0 0

2
0,1 0, 2 2

1

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

z z ,  ( )0

2
0,3 1

1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

z   

 ( )0

2
4,7 1

1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

z , ( ) ( )0 0

2
5,7 6,7 2

1

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

z z   

In order to completely calculate the internal recursive 
process, it is necessary to determine matrices 
( ) ( ) ( ), , , ,i fT k l T k P k l  using eq.(52). These matrices are as 

follows: 

 ( )
1 0 0

3.4 2 0 0
3 0 0

iT
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 
0 2 1
0 1 1
0 3 3

fT
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

,  

 
0 0 0
0 0 0
0 0 0

P
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

  

Obviously, for any k, l it is necessary to determine the 
following matrices ( ) ( ) ( ), , , ,i fT k l T k P k l  as well. 

Using eq.(55) ( ),k lΛ is computed, and then internal 
recursion ( ),i k lz  using eq.(58) can easily be computed. 
The following results will be obtained: 

 ( )
2

0,7 8
1

i

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

z ,  ( )
2

1,6 8
1

i

⎡ ⎤
⎢ ⎥= −⎢ ⎥
−⎢ ⎥⎣ ⎦

z ,  

 ( )
2

2,5 7
1

i

⎡ ⎤
⎢ ⎥= −⎢ ⎥
−⎢ ⎥⎣ ⎦

z ,  ( )
2

3,4 5
1

i

⎡ ⎤
⎢ ⎥= −⎢ ⎥
−⎢ ⎥⎣ ⎦

z   

Using Eqs. (56) and (57) ( ) ( ), , ,i fW k l W k l can be 
computed for e.g.: 

 ( )
1 0 0

3, 4 0 0 0
0 0 0

iW
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

,  ( )
0 0 0

3,4 0 1 1
0 0 1

fW
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

  

Figure 2.  

Finally, the state variables in discrete moments of time 
need to be determined as this was the main aim. This 
solution in space of states is as shown in Fig.2. 

Serial outward-inward solution 
As a first step in this algorithm ( )0 ,j N j−z  is 

computed outward from the interval centre as in Eqs. (71) 
and (72). These values, are used along with the boundary 
condition v , to solve ( )jx  and ( )N j−x  recursively 
while propagating back towards the interval centre. To 
begin, note that: 

 
( )
( )

( )
1

00 0,N N

i f

A E N
N V V

−
−⎡ ⎤⎡ ⎤ ⎡ ⎤= ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

x z
x v

 (75) 

where the inverse indicated on the right-hand side is again 
guaranteed to exist, thanks to well-posedness. To continue 
with the inward recursion, note that from eq.(31): 

 ( ) ( ) ( )2 2
0 ,N j N jA j E N j j N j− −− + − = −x x z  (76) 

while from eq.(13): 

 
( ) ( )
( ) ( )
( ) ( )

1 1
1

j

j

j

E j A N j
A j E N j

B j B N j

δ
δ
δ

+ − =
= − + − + +
+ − − −

x x
x x

u u
 (5.64) 

for any ( )[ ]1, 1 / 2j N∈ −  and any jδ . Then the recursion 

 

( )
( )

( )

( ) ( )

( ) ( )

12 2

0 ,

      1 1

1

N j N j

j

j

j

j A E
N j E A

j N j

A j E N j

B j B N j

δ

δ

δ

−− −−⎡ ⎤⎡ ⎤ = ⎢ ⎥⎢ ⎥−⎣ ⎦ ⎣ ⎦

⎡ ⎤−
⎢ ⎥
⎢ ⎥× − + − − +⎢ ⎥
⎢ ⎥
+ − − −⎢ ⎥⎣ ⎦

x
x

z

x x

u u

 (78) 

where jδ  is chosen so that the inverse on the right-hand 
eq.(78) exists (for e.g., if zE A−  has no roots on the unit 
circle, jδ  can be considered equal to 1). 

Example 3. 
As in the previous chapter, the method for determining 

the solution of TPBVDS in force working regime, using the 
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algorithm given in previous chapter will be shown. The 
system given by the following state equation and set of 
boundary conditions is considered: 

 ( ) ( ) ( )1E k A k B k+ = +x x u ,  0,1, 2,...,6k =   

 ( ) ( )0i fV V N+ =x x v ,  7N =   

where: 

 
1 0 0
0 0 1
0 0 0

E
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 
0 0 0
0 1 1
0 0 1

A
⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

,  

 
1 0 1
0 1 1
0 0 1

B
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, ( )
1
1
1

k
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

u ,  0,1,..., 1k N= −   

 
1 0 0
0 1 0
0 0 1

iV
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 
0 0 0
0 1 7
1 0 1

fV
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

,  
1
2
1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

v   

First, eq.(32) is computed, representing the external 
recursion, starting from the centre of the interval and 
computed outwards to the boundaries (k is decreasing and l 
is increasing for one step). The following results are 
obtained: 

 ( )0

2
3, 4 2

1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

z ,  ( )0

2
2,5 1

1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

z ,  

 ( )0

3
1,6 1

2

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

z ,  ( )0

4
0,7 2

3

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

z   

Using eq.(75) ( )0x  and ( )7x  are computed and their 
values are: 

 ( )
1

0 4
1

⎡ ⎤
⎢ ⎥= −⎢ ⎥
−⎢ ⎥⎣ ⎦

x ,  ( )
2

7 5
1

⎡ ⎤
⎢ ⎥= −⎢ ⎥
−⎢ ⎥⎣ ⎦

x   

Finally, when all these are determined, it only remains to 
determine the rest of state values from eq.(78) in discrete 
moments of time, as was the basic goal. In Fig.3 the 
solution in the space of states is shown. 

Figure 3. 

Shift - invariant TPBVDS 
A TPBVDS is described by Eqs. (13) and (14). It is 

assumed that 2N n≥  so that all modes can be excited and 
observed. In chapter 5.1 it is shown that if system Eqs. (13) 
and (14) is well-posed, it can be assumed, without loss of 
generality, that Eqs. (13) and (14) is in normalized form, 
i.e., that there exist scalars α  i β  such that satisfy eq.(18) 
(this is referred to as the standard from for the pencil 
{ },E A ) and in addition eq.(27). Note that eq.(18) implies 

that E  and A  commute and also that { },k kE A  is regular 

for all 0k ≥ . 
As derived earlier, the map from ( ){ },ku v  to ( )kx  has 

the following form: 

 ( ) ( ) ( )
1

0
,

N
k N k

l
k A E G k l B l

−
−

=
= + ∑x v u  (79) 

where Green's function ( ),G k l  is given by: 

( )
( )
( )

1 1

1 1

,
,

,

k N k k l k N l
i f

N k k N k l k l
i f

k l
A A E V A V E E E A l k
E E A V A V E A E A l k

ω
ω ω

− − − − −

− − − − −

=
− + Γ ≥⎧ ⎡ ⎤⎪ ⎣ ⎦= ⎨ − + Γ <⎡ ⎤⎪⎩ ⎣ ⎦

(80) 

and where ω  is any number for witch Γ  is invertible and 
given by eq.(21). 

In the marked contrast to the case for casual systems 
(E I= , 0fV = , ( )),G k l  does not, in general, depend on 
the difference in its arguments. Borrowing previous 
terminology: 

Definition 3. The TPVDS Eqs. (13) and (14) is a 
displacement system if (with the usual use of notation): 

 ( ) ( ), , 0 , 0 1G k l G k l k N j N= − ≤ ≤ ≤ ≤ −  (81) 

With 0=v  in eq.(14) then Eqs. (13), (14) and (15) 
define a linear map of the form: 

 ( ) ( ) ( )
1

0
,

N

i
l

k W k l l
−

=
= ∑x u  (82) 

 ( ) ( ), ,W k l CG k l B=  (83) 

Definition 4. The TPBVDS Eqs. (13) and (14) is 
stationary if: 

 ( ) ( ), , 0 , 0 1W k l W k l k N l N= − ≤ ≤ ≤ ≤ −  (84) 

Theorem 2. The TPBVDS Eqs. (13) and (14) is 
stationary if and only if: 

 [ ] [ ], , 0s i s s i sO V E R O V A R= =  (85a) 

 , , 0s f s s f sO V E R O V A R= =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (85b) 

where [ ],X Y XY YX= − , and: 

 1 2 1n n n
sR A B EA B E B− − −⎡ ⎤= ⎣ ⎦K  (86) 

 

1

2

1

n

n

s

n

CA
CEA

O

CE

−

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

M
 (87) 
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Corollary. The TPBVDS Eqs. (13) and (14) is a 
displacement system if and only if: 

 [ ] [ ], , 0i iV E V A= =  (88a) 

 , , 0f fV E V A= =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (88b) 

The matrices sR  and sO  in Eqs. (86) and (87) are the 
strong reachability and strong observability matrices of the 
TPBVDS. Thus eq.(85) states that iV  and fV must 
commute with E  and A  except for parts that are either in 
the left nullspace of sR  or the right nullspace of sO . If sR  
and sO  are of full rank - i.e., if the TPBVDS is strongly 
reachable and strongly observable - iV  and fV  must 
commute with E  and A . Turning to the corollary, it can 
be seen that these are precisely the conditions for a 
TPBVDS to be displacement, so that a displacement is 
always stationary. Furthermore, the only way in witch a 
TPBVDS can be stationary without being displacement is if 
the system is not strongly reachable or strongly observable. 

Proof of the corollary . It is assumed that Theorem 2 
holds. From the theorem, a TPBVDS is displacement if and 
only if eq.(85) holds with sR and sO  defined with 
C B I= = . However, thanks to the generalized Cayley-
Hamilton theorem for pencils in the standard form, the 
matrices { }1 0 1k n kA E k n− − ≤ ≤ −  span the same set as 

{ }, 0k jE A k j ≥ . Thus sR and sO are of full rank, so that 
eq.(85) is equivalent to eq.(88). 

Proof of Theorem 2. What must be shown is that 
eq.(85) is equivalent to:  

 ( ) ( )1, 1 ,W k j W k j+ + =  (5.76) 

for 0 1, 0 2 k N j N≤ ≤ − ≤ ≤ − . Then, using eq.(80), the 
commutativity of E  and A , and performing some algebra 
it can be found that eq.(89) is equivalent to: 

 
1 1 2 1 1

1 1    

k N k N j j
i f

k N k N j j
i f

CA E V A V E A E B
CA E V A V E A E B

ω
ω

+ − − − − + −

− − − −

+ Γ⎡ ⎤⎣ ⎦
= + Γ⎡ ⎤⎣ ⎦

 (90) 

From the Cayley-Hamilton theorem and the fact that 
2N M≥ , it can be found that eq.(90) is equivalent to : 

 
1

1
s i f s

s i f s

O V A V E E R
O E V A V E A R

ω
ω

−

−

+ Γ =⎡ ⎤⎣ ⎦
= + Γ⎡ ⎤⎣ ⎦

 (91) 

Define the strong reachability subspace  

 ( )s sR= ℜR  (92) 

Then the generalized Cayley-Hamilton theorem implies 
that sR  is A - and E - and therefore also Γ - invariant. 
Furthermore, for almost all ω , Γ  is invertible so that the 
range of 1

s
−Γ R  is sR . Since this does not depend on ω , it 

can be deduced that eq.(91) is equivalent to the following 
pair of equalities: 

 [ ] 1 0s i i sO AV E EV A A R−− Γ =  (93) 

 1 0s f f sO AV E EV A E R−− Γ =⎡ ⎤⎣ ⎦  (94) 

Since { },N NE A  is regular, ( )N N
s s sA R E R= ℜ ⎡ ⎤⎣ ⎦R  so 

that eq. (93) is equivalent to:  

 [ ] 1 0N
s i i sO AV E EV A A A R−− Γ =  (95) 

 [ ] 1 0N
s i i sO AV E EV A E E R−− Γ =  (96) 

In a similar fashion eq.(94) is equivalent to the pair of 
equalities: 

 1 0N
s f f sO AV E EV A E A R−− Γ =⎡ ⎤⎣ ⎦  (97) 

 1 0N
s f f sO AV E EV A E E R−− Γ =⎡ ⎤⎣ ⎦  (98) 

Using the commutativity of E  and A  together with 
eq.(27), it can be seen that eq.(97) is equivalent to: 

 [ ] 1 1 0N
s i i sO AV E EV A E R+ −− + Γ =  (99) 

Using the definition of Γ , it can be seen that Eqs. (96) 
and (99) imply: 

 [ ] 0s i i sO AV E EV A R− =  (100) 

In a similar fashion Eqs. (96) and (99) can imply: 

 0s f f sO AV E EV A R− =⎡ ⎤⎣ ⎦  (101) 

The E - and A - of sR  then imply that eq.(100-101), 
are, in fact, equivalent to Eqs. (93) and (94). 

Finally, note that thanks to the commutativity of E  and 
A , eq.(85a) implies eq.(100) and eq.(85b) implies eq.(101). 

To see that the reverse of these implications holds, assume 
that 0α ≠  in eq.(18) (if 0α = , reverse the role E  and 
A ). Then E I Aγ δ= +  with 0γ ≠ . Substituting this into 

eq.(100) yields eq.(85a). Similarly eq.(101) implies 
eq.(85b). 

The characterization of the displacement property in 
eq.(85) simplifies many computations. In particular, it is not 
difficult to check that Green`s function of a displacement 
system is 

 ( )
1

1
, 0,

, 0.
    

 

k N k
i

k N k
f

V A E k
G k

V E A k

− −

− + −

>⎧
= ⎨− ≤⎩

 (102) 

Similarly, the weighting pattern of a stationary TPBVDS 
is given by 

 ( )
1

1
, 0,

, 0.
    

 

k N k
i

k N k
f

CV A E B k
W k

CV E A B k

− −

− + −

>⎧
= ⎨− ≤⎩

 (103) 

Inward processes, outward processes, and 
extendibility 

Inward and outward processes play an important role in 
the analysis of TPBVDS. The outward process, which 
expands outward toward the boundaries, summarizes what 
is necessary to know about the input inside any interval in 
order to determine x outside the interval. The inward 
process uses input values near the boundary to propagate 
the boundary condition inward. 

The outward process has a simple definition and 
characterization as shown: 
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 ( ) ( ) ( )0 , ,  l k l kk l E l A k k l− −= − <z x x  (104) 

It is possible to express ( )0 ,k lz  in terms of the 
intervening inputs: 

 ( ) ( )
1

1
0 ,

l
j k l j

j k
z k l E A Bu j

−
− − −

=
= ∑  (105) 

and to write outward recursions (k decreasing and l 
increasing). In general ( )0 ,k lz  can only be propagated in 
an outward direction. Note also that ( )0 ,k lz  does not 
involve the boundary matrices iV  and fV . 

The inward process ( ), ,i k l K L≤z , is a faction of the 
boundary value v  and the inputs ( ) ( ){ }0 ,..., 1K −u u  and 

( ) ( ){ },..., 1L N −u u  so that the TPBVDS eq.(13) with 
boundary condition: 

 ( ) ( ) ( ) ( ) ( ), , ,i f iV K L x K V K L x L z K L+ =  (106) 

yields the same solution as Eqs. (13) and (14) for 
K k L≤ ≤ . Here ( ),iV K L  and ( ),fV K L  are assumed to 
be such that eq.(13), eq.(100) is in normalized form, i.e.: 

 ( ) ( ), ,L K L K
i fV K L E V K L A I− −+ =  (107) 

Note in particular the starting values and the “final 
values”: 

 ( )0,i N =z v , ( )0,i iV N V= , ( )0,f fV N V=  (108) 

 ( ) ( ), ,i k k k=z x     k∀ ∈R  (109) 

For the general TPBVDS there are no simple formulas or 
recursions for ,i iVz  and fV . However, the following does 
not hold for displacement systems:  

Proposition 2. Assume that Eqs. (13) and (14) is a 
displacement system. Then for k j≤   

 ( ), N l k
i iV k l V E − +=  (110) 

 ( ), N l k
f fV k l V A − +=  (111) 

 
( ) ( ) ( )

( )
0 0

1
1

0

, 0, ,

      

N l k N l k
i i f

k
N l k N l j k j

i
j

k l E A V E k V A l N

E A V E E A B j

− −

−
− − − −

=

= + −

= + ∑

z v z z

v u
  

 ( )
1

1 1

1

N
k s N s

f
s

V A E A B s
−

− − −

=
− ∑ u  (112) 

Proof. First, eq.(27) guarantees that the definitions in 
Eqs.(110) and (111) yield TPBVDSs in the normalized 
form for all k l≤ . Eq.(112) is obtained by replacing ( )kx  
and ( )lx  in: 

 ( ) ( ) ( ), N l k N l k
i i fk l V E k V A l− + − += +z x x  (113) 

by their expressions in terms of v  and ( )ku  in eq.(79) 
using (102). Thus from eq.(112) ( ),i k lz  depends only on v 
and the values of u of  the interval [ ],k l . Finally, to show 
that Eqs.(13) and (106) yields the same solution, it is noted 

that the pair of relations eq.(104) and eq.(113) have a 
simple inverse: 

 
( )
( )

( )
( )

,
,

N l k l k
of

N l k l k
ii

k k lV A E
l k lV E A

− + −

− + −

−⎡ ⎤⎡ ⎤ ⎡ ⎤= ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

x z
x z

 (114) 

Thus ( )lx  and ( )kx  can be obtained completely from 
( ),i k lz  as defined and the outward process, which is not 

changed by restricting the size of the interval. Thus the 
values of  ( )kx  at these two points are correct, and 
therefore by moving in one step at a time it can be 
concluded that Eqs. (13) and (106), with the chosen iV  and 

fV  given by Eqs. (110) and (111) yields the correct 
solution. 

Example 6. 
The following system which is a displacement system 

given by its own state equation and system of boundary 
conditions is considered: 

 ( ) ( ) ( )1E k A k B k+ = +x x u ,  0,1,2,...,6k =   

 ( ) ( )0i fV V N+ =x x v ,  7N =   

where: 

 
1 0 0
0 0 1
0 0 0

E
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 
0 0 0
0 1 1
0 0 1

A
⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

,  

 
1 0 1
0 1 1
0 0 1

B
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

,  
1
1
1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

u   

 
1 0 0
0 1 0
0 0 1

iV
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 
0 0 0
0 1 7
1 0 1

fV
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 
2

14
2

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

v   

As in previous examples, in order to present the results 
in the best possible way the solution of the system, which is 
driven by input step function is considered. In this example, 
the already known algorithm which is given above will be 
used, with the difference, that the adequate internal 
recursive process will be computed in a simpler way using 
eq.(112). 

First, eq.(105) is solved presenting external recursion, 
starting from the centre of the interval outward to the 
boundaries (k is decreasing and l is increasing for one step). 
Starting from ( )0 3,4z  to ( )0 0,7z  the following values are 
obtained: 

 ( )0

1
3,4 0

1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

z ,  ( )0

1
2,5 1

1

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

z ,  

 ( )0

1
1,6 3

1

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

z ,  ( )0

1
0,7 5

1

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

z   

In order to compute eq.(112) which presents internal 
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recursion from the boundaries to the centre of the interval 
(k is increasing and l is decreasing), it is also necessary to 
compute ( )0 0,3z , ( )0 0,2z , ( )0 0,1z  as well as ( )0 4,7z , 

( )0 5,7z , ( )0 6,7z  and they are: 

 ( ) ( )0 0

1
0,1 0, 2 0

1

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

z z ,  ( )0

1
0,3 1

1

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

z   

 ( )0

1
4,7 1

1

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

z , ( ) ( )0 0

1
5,7 6,7 0

1

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

z z   

Now, the internal recursive process ( ),i k lz  using 
eq.(112) can easily be computed. Then the following results 
obtained are: 

 ( )
2

0,7 14
2

i

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

z ,  ( )
1

1,6 4
1

i

⎡ ⎤
⎢ ⎥= −⎢ ⎥
−⎢ ⎥⎣ ⎦

z ,  

 ( )
1

2,5 5
1

i

⎡ ⎤
⎢ ⎥= −⎢ ⎥
−⎢ ⎥⎣ ⎦

z ,  ( )
1

3, 4 3
1

i

⎡ ⎤
⎢ ⎥= −⎢ ⎥
−⎢ ⎥⎣ ⎦

z   

In the end, it remains only to determine the quantities of 
states in discrete moments, if it is necessary.  
 
 

Strong reachability and observability 
In the case of standard linear systems, reachability 

corresponds the ability to drive the state of the system to an 
arbitrary value by appropriate choice of the input sequence. 
It is well known that if such a system is reachable it is 
possible to reach an arbitrary state value by proper choice 
of the n previous input values, where n is the dimension of 
the system. In case of a TPBVDS, however, there is a 
distinction between the concept of reachability by choosing 
the inputs in an n–point neighbourhood and the concept of 
reachability by choosing the inputs in the whole domain of 
definition (i.e. [ ]0, N ). The first concept shall be referred to 
as strong reachability and the second weak reachability. 
These concepts correspond, respectively, to Krener`s 
reachability on and reachability off which he in turn defines 
in terms of the outward and inward processes, respectively. 
In the next two sections in which the corresponding 
observability concepts will also be analyzed the same will 
be done. 

The first step will be an examination of reachability, and 
for this the following is needed. 

Definition 5. The system Eqs. (13) and (14) is strongly 
reachable on [ ],K L  if the map: 

 ( ) [ ]{ } ( ), ,ou k k K L z K L∈ →  (115) 

is onto. The system is strongly reachable if it is strongly 
reachable in some interval. 

From eq.(32) it can be written: 

 ( ) ( )
( )

( )
0 ,

1
s

K
K L R L K

L

⎡ ⎤
⎢ ⎥= − ⎢ ⎥

−⎢ ⎥⎣ ⎦

M

u
z

u
 (116) 

 ( ) 1 2 1j j j
sR j A B EA B E B− − −= ⎡ ⎤⎣ ⎦M MLM  (117) 

While waiting for the following result, define the strong 
reachability matrix  

 ( )s sR R n=  (118) 

and strong reachable subspace: 

 ( )s sR= ℜR  (119) 

Theorem 3. The following statements are equivalent. 
a) The system Eqs. (13) and (14) is strongly reachable. 
b) The strong reachability matrix sR  has full rank. 

c) The matrix [ ]sE tA B− M  has full rank for all 
( ) ( ), 0,0s t ≠ . 

d) The state ( )kx  at any point [ ],k n N n∈ −  can be made 
to assume any desired value by proper choice of inputs 
( ) [ ], , 1j j k n k n∈ − + −u , and this can be accomplished 

for any choices of iV  and fV  for which Eqs. (13) and 
(14) is well-posed. 
Before proving this result, let several comments be 

made. Note first that condition ( )c  is one of the 
reachability conditions found in the descriptor references 
(Lewis 1985, Yip and Sincovec 1981). By introducing the 
standard form of a regular pencil it is possible to obtain a 
condition, namely that eq.(117) is of full rank for j n= , 
and that is far simpler than those presented previously. Note 
also that as for standard linear systems, condition ( )b  
implies that a system is strongly reachable if and only if it 
is strongly reachable over intervals of length n. On the other 
hand, in condition ( )d  it is required that ( )kx  can be 
driven to an arbitrary value by applying appropriate inputs 
over the 2n-point symmetric neighbourhood of k. In fact, an 
n-point neighborhood of k is the only thing necessary, but 
the extent of this interval before and after k depends on the 
matrices E , A  and B  (i.e. on the causal/anticausal 
structure of eq.(13)). Condition ( )d  simply uses the union 
of all such n-point intervals and therefore is appropriate for 
all TPBVDS. Finally, note that strong reachability does not 
depend on the boundary matrices iV  and fV  (as long as 
Eqs. (13) and (14) is well-posed). This can be seen directly 
from the definition of ( )0 ,k lz  or from condition ( )b . 

Proof. The equivalence of ( )a  and ( )b  follows 
immediately from the generalized Cayley-Hamilton 
theorem (statement (iii) of the proposition (1)). As an 
alternative proof, note that  

 ( )[ ] ( )[ ] ( )[ ]1s s sR k E R k A R kℜ + = ℜ + ℜ  (120) 

so that  

( )[ ] ( )[ ]2 1s sR k R kℜ + = ℜ +  

if  

( )[ ] ( )[ ]1s sR k R kℜ + = ℜ .  
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Also, thanks to, eq.(18):  

 ( )[ ] ( )[ ]1s sR k R kℜ ⊆ℜ +  (121) 

Simple dimension counting then shows that: 

 ( )[ ] ( )[ ]    s sR k R n k nℜ =ℜ ∀ ≥  (122) 

The equivalence of statements ( )b  and ( )c  is proved as 
follows. First assume that 0≠z  in eq.(18). In this case: 

 1n
s rang B AB A B−= ⎡ ⎤⎣ ⎦R M MLM  (123) 

(This can be verified by setting j n=  in eq.(116) and 
then by replacing E  by ( )I Aγ δ+ ). Also, eq.(18) allows 
writing: 

 sE tA uI vA− = −  (124) 

 ,   su v t s β
α α
⎛ ⎞= = −⎜ ⎟
⎝ ⎠

 (125) 

Note that ( ) ( ), 0,0u v =  if and only if ( ) ( ), 0,0s t = . 
Thus, statement ( )c  is equivalent to the claim that 
[ ]uI vA B− M  is of full rank for ( ) ( ), 0,0u v ≠ . Note that this 
is a trivial case for 0, 0u v≠ =  since [ ]I BM  has full rank. If 

0v ≠ , uI vA−  can be clearly divided by v . Consequently, 
statement ( )c  is equivalent to [ ]wI A B− M  being of full 
rank for all 0w ≠ . For the case in which 0α = , it can be 
argued in a similar fashion by reversing the roles of E and 
A. Note also that if 0α ≠  and 0β ≠ , then: 

 
1

1

n
s

n

rang B AB A B
B EB E B

−

−

= ⎡ ⎤⎣ ⎦
= ⎡ ⎤⎣ ⎦

R M MLM

M MLM
 (126) 

Finally, consider the equivalence of statements ( )b  and 
( )d . Because of the linearity of the system, it can be 
assumed that =v 0  and ( )j =u 0  for [ ]0, 1j k n∈ − −  and 

[ ],j k n N∈ + . In this case Eqs. (28) and (29) and eq.(32) 
allow writing: 

( ) ( ) ( )
( ) ( )

1

1

,
,

k N k k N k n
i f o

N k k N k k n
i f o

x k A A E V A V E E A z k k n
E E A V A V E A E z k n k

− − − −

− − − −

= − + Γ +⎡ ⎤⎣ ⎦
+ − + Γ −⎡ ⎤⎣ ⎦

 (127) 

Let ξ  be an arbitrary vector and choose inputs 

( ) [ ], , 1j j k n k∈ − −u  so that ( )0 , nk n k E ξ− =z  and 

( ) [ ], , 1j j k k n∈ + −u  so that ( )0 , nk k n A ξ+ = −z . With 
these choices which can be found since sR  has full rank, 
eq.(127) is reduced to 

 ( )k ξ=x  (128) 

This shows that ( )a  implies ( )d . To show the reverse 
implication, the following choice for iV  and fV  can be 
made: 

 1
iV E−= ∆  (129a) 

 1
fV Aγ −= ∆  (129b) 

 1 1NE Aγ+ +∆ = +  (130) 

γ  is any number that makes ∆  invertible. Note that Eqs. 
(13) and (14) with this choice for iV  and fV  is in the 
normalized form. Let =v 0  and ( )j =u 0  for 

[ ]0, 1j k n∈ − −  and [ ],j k n N∈ + .  
Then in this case Eqs. (28) and (29) is reduced to: 

 

( ) ( )
( ) ( )

( ) ( )
( )

1 1

2

1

1 1

1 ... 1
1 ...

1

n N n

n N n N

N N

n N n

k A E B k n
A E B k n E B k

A B k A EB k
E A B k n

γ γ
γ

− − −

− −

−

− − +

= ∆ − +⎡⎣
+ − − + + −
+ + + + +
+ + − ⎤⎦

x u
u u

u u
u

 
 (131) 

The range of the mapping defined in (5.118) is  

 1 1N n N n
s sE A− − − −∆ +⎡ ⎤⎣ ⎦R R  

Assuming that ( )d  is true, all this must also belong to 
nR . Consequently it can be concluded that n

s R=R  for 
this choice of ,i fV V . Thanks, then, to the statement ( )c  of 

the theorem, it can be seen that n
s R=R  for any ,i fV V  for 

which the TPBVDS is well-posed, so that statement ( )a  
must also hold. 

Then, the dual concept of strong observability is 
considered in a manner analogous to that of casual linear 
systems. Specifically, for such systems observability 
corresponds to being able to reconstruct the state at the 
same point in time, given the present and future 
observations, when all future inputs are zero. The 
counterpart to this in this context is the following.  

Definition 6. The system Eqs. (13) and (14) is strongly 
observable on [ ],K L  if the map: 

 ( ) ( ) [ ]{ }0 , ,iK L k k K L→ ∈z x  (132) 

defined by Eqs .(41) and (42) with ≡u 0  is one-to-one. 
The system is strongly observable if it is strongly 
observable on [ ],K L  for all K, L such that 1L K n− ≥ − . 

Since Eqs .(41) and (42) is in the normalized form, the 
Green`s function solution eq.(28) can be adopted to obtain 
an explicit expression for the mapping defined in eq.(132). 

Specifically: 

 

( )
( )

( )

( ) ( )
1

,

i

i
s i

i

k
k

O L K K L

L

⎡ ⎤
⎢ ⎥+⎢ ⎥ = −
⎢ ⎥
⎢ ⎥
⎣ ⎦

x
x

z

x
M

 (133) 

where: 

 ( )
1

j

j

s

j

CE
CAE

O j

CA

−

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

M
 (134) 

In analogy with the reachability results, the strong 
observability matrix is defined: 

 ( )1s sO O n= −  (135) 

and the strongly unobservable subspace 
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 ( )s sO O=ℵ   

Theorem 4. The following statements are equivalent. 
a) The system Eqs. (13) and (14) is strongly observable. 
b) The strong observability matrix sO has full rank. 
c) The matrix 

 
sE tA

C
−⎡ ⎤

⎢ ⎥⎣ ⎦
  

has full rank for all ( ) ( ), 0,0s t ≠ . 

d) The state x at any point [ ],k n N n∈ −  can be uniquely 
determined from the outputs ( ) [ ], , 1i j j k n k n∈ − + −x  
and ( ) [ ], , 2j j k n k n∈ − + −u . This can be accom-
plished for any choice of iV and fV  for which Eqs. (13) 
and (14) is well-posed. 
The proof of this theorem is analogous to that for 

Theorem 3. and is therefore omitted. Also, similar 
comments concerning these results can be made. For e.g., 
thanks to the Cayley-Hamilton theorem, statement b) is 
considerably simpler than expressions that have appeared 
previously. Also, strong observability depends only on 

,E A  and C  and not on the particular choice of boundary 
matrices iV  and fV . 

Weak raechability and observability 
The concepts of weak reachability and observability, in 

contrast to strong reachability and observability, depend 
intimately on the particular choice of boundary matrices. 
The examination of these weaker concepts for TPBVDS is 
somewhat more complicated than in Krener`s case because 
of the possible singularity of E  and A . 

Definition 7. The system Eqs. (13) and (14) is weakly 
reachable off [ ],K L  if the map KLF  defined in eq.(38), 
with ≡v 0 , is onto. The weakly reachable subspace 

( ),w K LR  is the range of this map. The system is weakly 
reachable if it is weakly reachable off [ ],K L  (i.e. if 

( ), n
w K L R=R ) for all [ ], ,K L n N n∈ − . 
Note that the weak reachability condition is natural 

counterpart to the casual reachability definition in which it 
is required that the state can be driven to an arbitrary value 
from zero initial condition. Also, note the use of the 
wording „reachable off“, emphasizing the fact that the 
inputs used in this case are confined to the exterior of the 
interval [ ],K L . 

An important property of a casual system is that the 
dimension of the reachable space does not change, and in 
fact the reachable space itself is time-invariant. The 
following theorem shows that the first of these statements is 
also true for TPBVDS.  

Theorem 5. The dimension of ( ),w K LR  is constant for 
[ ], ,K L n N n∈ − . 

Proof. Let K, L be any points in [ ],n N n− . From eq.(70) 
(with =v 0 ) it can be seen that: 

 ( ) ( ) ( ) ( ), , , ,w i s fK L K L T K L T K L= Λ +⎡ ⎤⎣ ⎦R R R  (136) 

Now assume that [ ]1 ,K n N n− ∈ −  as well. It is 
attempted to show that:  

 ( ) ( )dim 1, dim ,w wK L K L− =R R  (137) 

To do this, ( )1,iT K L−  and ( )1,fT K L−  must first be 
found. In fact, what should be shown is that a possible set 
of choices for iT , fT  and P  is 

 ( ) ( )1, ,i iT K L T K L A− = %  (138a) 

 ( ) ( )1, ,f fT K L T K L− =  (138b) 

 ( ) ( )1, ,P K L P K L− =  (138c) 

where A%  has the same eigenstructure as A  except that the 
zero eigenvalue in A  has been replaced by 1 in A% . 
Without the loss of generality (since similarity 
transformations have no effect on the dimension of the 
reachability spaces), it can be assumed that A  is in Jordan 
form: 

 
0

0
J

A
N

⎡ ⎤= ⎢ ⎥⎣ ⎦
 (139) 

where J  is invertible and N  is nilpotent. In this case: 

 
0

0 1
J

A
N

⎡ ⎤= ⎢ ⎥+⎣ ⎦
 (140) 

For eq.(138) to be a valid choice, two conditions must be 
satisfied.  

First ( ) ( ) ( )1, 1, 1,i fT K L T K L P K L− − −⎡ ⎤⎣ ⎦  must be 
a full rank. This is obviously the case since 

( ) ( ) ( ), , ,i fT K L T K L P K L⎡ ⎤⎣ ⎦  is, and A%  is invertible. 
Secondly to show that eq.(52) is satisfied with 1k K= −  
and l L= , i.e., it must be verified: 

 ( ) ( )1, , 0K
i iT K L AA P K L V−− + =%  (141) 

when it is known: 

 ( ) ( ), , 0K
i iT K L A P K L V− + =  (142) 

However, since 11 , 0KK n N −− ≥ = , so that 
1K KAA A− =% . 

Consequently, it can be written: 

 
( ) ( )

( ) ( )
1, 1,

, ,
w

i s f s

K L K L
T K L T K L

− = Λ − ×
× +⎡ ⎤⎣ ⎦

R
R R  (143) 

Comparing Eqs. (136) and (143) and using the fact that 
( ),1kΛ  are all invertible, it can be seen that eq.(138) will 

hold if it can be shown that:  

 s sA =R R%  (144) 

Note first that s sA ⊆R R , so that eq.(144) is clearly true 
if A  is invertible. If A  is singular, note that α  cannot be 
zero in E A Iα β+ = , so that sR is given by eq.(123). 

Then assuming that A  and A%  are as in Eqs. (139) and 
(140) and using the fact that J  is invertible, it can be seen 
that eq.(144) will hold if it can be shown that:  
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0 0
0 s sI
⎡ ⎤ ⊆⎢ ⎥⎣ ⎦

R R  (145) 

If B  compatibly with eq.(139) is partitioned the 
following is obtained:  

 1

2

B
B

B
⎡ ⎤= ⎢ ⎥⎣ ⎦

 (146) 

 
1

1 1 1
1

2 2 2 0 0

n

s n

B JB J B
rang

B NB N B

−

−

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
R

K K K K

K K
(147) 

where µ  is the nilpotency degree of N . Let J  be 1 1n n×  
and N  be 2 2n n×  (so that 1 2n n n+ =  and 2nµ ≤ ). 

Suppose that [ ]1 2 sξ ξ ′′ ′ ∈R ; it should be shown that  

[ ]20 sξ ′′ ∈R . However, if [ ]1 2 sξ ξ ′′ ′ ∈R , inputs 
, 0,..., 1i i µ= −u  exist so that: 

 
1

2 2
0

i
i

i
N B

µ
ξ

−

=
= ∑ u  (148) 

Wishing to show that this sequence with , ,...,i i nµ=u  
can be augmented so that:  

 
1

1
0

0i
i

i
J B

µ−

=
=∑ u  (149) 

i.e. so that: 

 
11

1 1
0

n
i i

i i
i i

J B J J B
µ

µ µ

µ

−−
− −

= =

⎛ ⎞= − ⎜ ⎟
⎝ ⎠

∑ ∑u u  (150) 

The right-hand side of eq.(150) is in the reachable 
space of ( )1,J B . Furthermore, since 11 1n nµ− − ≥ − , the 
left-hand side of eq.(150) can be driven to any point in the 
reachable space of ( )1,J B . 

So far it has been shown that ( )1,w K L−R  has the same 
dimension as ( ),w K LR  as long as 1K n− ≥ . In a similar 
manner it can be shown that ( ), 1w K L +R  has the same 
dimension as well, as long as 1L N n+ ≤ − . This then 
completes the proof of the theorem. 

Note that one immediate consequence of Theorem 5 is 
the following. 

Corollary. The system Eqs. (13) and (14) is weakly 
reachable if it is weakly reachable off some [ ],K L  with 

[ ], ,K L n N n∈ − .  
Hence, in order to test for weak reachability it is only 

necessary to examine the reachability space ( ),w k kR  of 
( ) ( ),i k k k=z x  for any [ ],k n N n∈ − . Note further that 
( ),w k kR  is the range space for the map from 
( ) ( ){ }0 ,..., 1N −u u  to ( )kx  (with the boundary value set 

to zero); i.e. weak reachability corresponds to being able to 
drive ( )kx  to an arbitrary value using the entire interval of 
the controls. Thanks to statement d) of Theorem 5.3, it can 
be seen that weak reachability is indeed weaker than strong 
reachability which corresponds to being able to drive ( )kx  
to an arbitrary value using only inputs within n  time steps 
of k . 

While eq.(136) provides in principal a method for 

computing weakly reachable subspaces, it involves a 
significant amount of computation in order to determine 
( ) ( ), , ,iK L T K LΛ  and ( ),fT K L . As the next theorem 

shows, there is an easier method for computing ( ),w k kR . 
Theorem 6. Let [ ],k n N n∈ − . Then: 

 
( ) ( ), k N k

w i f s s

k N k k N k
i s f s s

k k rang A E V A V E R R

rang A E V R A E V R R

−

− −

= +⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦

R

      

M

M M

 (151) 

Proof. From Eqs. (28) and (29) (with 1ω =  for 
simplicity) it follows that: 

 ( ) ( )( ) ( )
( )( ) ( )

, k N k k
w i f s

N k k N k
i f s

k k A A E V A V E E R N k
E E A V A V E A R k

−

− −

= ℜ − + −⎡⎣
− + ⎤⎦

R
      

M (152) 

That is, if ( ),ww k k∈R , then there exist , i s∈x x R  so 
that: 

 

( )
( )

( )
( )

1 1

k N k k
i f

N k k N k
i f i

k N k k N k
i

k N k
i f i

w A A E V A V E E

E E A V A V E A
A E A E

V A V E E A

−

− −

+ − + −

−

= − +⎡ ⎤⎣ ⎦
+ − +⎡ ⎤⎣ ⎦
= + − ×
× + +⎡ ⎤⎣ ⎦

x

x
x x

x x

 (153) 

Since sR is E - and A -invariant, it can be seen that: 

 ( ) ( ), k N k
w i f s sk k A E V A V E R R−⊆ ℜ +⎡ ⎤⎣ ⎦R M  (154) 

The first equality in eq.(151) will be proven if it can be 
shown that any w in the range of 

( )k N k
i f s sA E V A V E R R− +⎡ ⎤⎣ ⎦M  is in ( ),w k kR . Clearly any 

such w can be written as: 

 ( )k N k
i fw s A E V A V E t−= − +  (155) 

with , ss t∈R . Comparing this to eq.(153) it can be seen 
that this will be concluded if it can be shown that there 
exists , i s∈x x R  so that 

 
1 1k N k

k N k
i

A E
E A

+ − +

−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦

x s
x t

 (156) 

The matrix on the left-hand side of eq.(156) is invertible, 
and solving eq.(156) the following is obtained 

 
1 1 1

1 1 1

N k N k

k k

A E
E A

− − − − +

− − +

Γ −Γ⎡ ⎤⎡ ⎤ ⎡ ⎤= ⎢ ⎥⎢ ⎥ ⎢ ⎥−Γ Γ⎣ ⎦ ⎣ ⎦⎣ ⎦

x s
y t

 (157) 

where Γ  is defined in (5.9) (with 1ω = ). Since sR  is E - 

and A -invariant, it is also 1−Γ  invariant, so that , i s∈x x R . 
Finally it is necessary to verify the second equality in 

eq.(151). Since sR  is E  and A  invariant and 
N N

i fV E V A I+ = , it can be seen that: 

 ( )i f s s i s f sV A V E R R V R V Rℜ + ⊆ ℜ⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦M M  (158) 

On the other hand: 

( )
( ) ( )
( )

1 1N N
f s s f s s

N N N
i f s i f s s

i f s s

V R R V E A R R
V A V E E R V E V A AR R
V A V E R R

+ +ℜ = ℜ −⎡ ⎤⎡ ⎤⎣ ⎦ ⎣ ⎦
⊆ ℜ + +⎡ ⎤⎣ ⎦
⊆ ℜ +⎡ ⎤⎣ ⎦

      
      

M M

M M

M

(159) 



  G.SIMEUNOVIĆ, D.DEBELJKOVIĆ: SOLVING TWO - POINT BOUNDARY VALUE DESCRIPTOR SYSTEMS 93 

Similarly: 

 ( )f s s i f s sV R R V A V E R Rℜ ⊆ℜ +⎡ ⎤⎡ ⎤⎣ ⎦ ⎣ ⎦M M  (160) 

Combining Eqs. (158), (159) and (160) it can be seen 
that: 

 ( )i f s s i s f sV A V E R R V R V Rℜ + = ℜ⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦M M  (161) 

Finally: 

 

( )
( )

k N k
i f s s

k N k
i f s s s

k N k
i s f s s

k N k k N k
i s f s s

A E V A V E R R
A E V A V E R R
A E V R V R

A E V R A E V R R

−

−

−

− −

ℜ +⎡ ⎤⎣ ⎦
= ℜ + +⎡ ⎤⎣ ⎦
= ℜ +⎡ ⎤⎣ ⎦
= ℜ⎡ ⎤⎣ ⎦

R
R

M

M

M

M M

 (162) 

Note from eq.(151) that ( ),s wR k k⊆R  for 
[ ],k n N n∈ − , consistent with the earlier statement that 

weak reachability is indeed a weaker condition. 
Theorem 6 provides a computable weak reachability 

condition: it is then checked to see if either of the matrices 
in eq.(151) is full rank. The following results provide a 
simpler result of this type as no powers of E or A need be 
computed. 

Theorem 3. The system Eqs. (13) and (14) is weakly 
reachable if and only if either of the matrices  

 ( )i f s sEA V A V E R R+⎡ ⎤⎣ ⎦M  (163a) 

or 

 i s f s sEAV R EAV R R⎡ ⎤⎣ ⎦M M  (163b) 

has full rank. 
Proof. To begin with, it is necessary to by show that for 

any subspace D  of nR : 

 2n n
s sE R E R+ = ↔ + =D R D R  (164) 

Let S  be a subspace so that: 

 s sE⊕ = +F R D R  (165) 

Then: 

 ( )
( )

2
s s s

s s s

E E E
E E

+ = + +
= ⊕ + = ⊕

D R D R R
F R R F R

 (166) 

Dimension counting then shows that the right-to-left 
implication in eq.(165) is true. Suppose that n

sE R+ =D R . 
Then 

 ( )
( )

2
s s s

n n
s s

E E E
E R E R

+ = + +
= + ⊇ ⊕ =

D R D R R
R D R

 (167) 

Note that by iterating eq.(164) it can be seen that if 
k n

sE R+ =D R  for some 0k > , it equals nR  for all 0k > . 
A similar statement can be made with E  replaced by A , 
and combining these k l n

sE A R+ =D R for some pair 

, 0k l >  if and only if n
sEA R+ =D R . The theorem then 

follows from the application of this result with 
( ){ }i f sV A V E R= ℜ +D . 

A brief presentation of the corresponding concept of 
weak observability, and some relevant results follows: 

Definition 8. The system Eqs. (13) and (14) is weakly 
observable off [ ],K L  if the map from ( ),o K Lz  to 

( ) [ ] [ ]{ }0, ,i j j K L N∈ ∪x , defined by eq.(15) and the 
four-point boundary-value problem Eqs. (35), (36) and (37) 
with ,= ≡v 0 u 0 , is one-to-one. The weakly unobservable 
subspace ( ),O w K L  is the kernel of this map. The system 
is weakly observable if it is weakly observable off [ ],K L  
(i.e. if ( ) { }, 0O w K L = ) for all [ ], 1, 1K L n N n∈ − − + . 

Theorem 7. The dimension of ( ),O w K L  is constant for 
[ ], 1, 1K L n N n∈ − − + . 

Corollary. The system Eqs. (13) and (14) is weakly 
observable if it is weakly observable off some [ ],K L . 

A consequence of this last result is that in order to test 
for weak observability it is only necessary to examine the 
unobservability space ( ), 1O w k k +  of 

( ) ( )0 , 1k k B k+ =z u . Furthermore, note that ( ), 1O w k k +  
is the kernel of the mapping from ( )B ku  to the full 
sequence of measurements ( ) ( )0 ,...,i i Nx x (with =v 0 ). 
This is weaker than strong observability which involves the 
use of outputs restricted to lie within n  time steps of k . 

Theorem 8.  Let [ ],k n N n∈ − . Then: 

 

( ) ( ) 1

1

1

, s
N k kw

s i f

s
N k k

s i
N k k

s f

O
k k

O V A V E A E

O
O V A E
O V A E

− −

− −

− −

⎡ ⎤
=ℵ =⎢ ⎥+⎣ ⎦

⎡ ⎤
⎢ ⎥=ℵ⎢ ⎥
⎢ ⎥⎣ ⎦

O

 (168) 

Note that ( ),O Ow sk k ⊆ , demonstrating again that 
weak observability is a weaker condition. 

Theorem 9. The system Eqs. (13) and (14) is weakly 
observable if and only if either of the matrices: 

 ( ) 1
s

N k k
s i f

O
O V A V E A E− −
⎡ ⎤
⎢ ⎥+⎣ ⎦

 (169) 

 1

1

s
N k k

s i
N k k

s f

O
O V A E
O V A E

− −

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (170) 

has full rank. 

Conclusion 
TPBV in case of singular systems exists due to the 

singularity of matrix A . Unlike causal systems, where 
TPBV is the consequence of applying adequate methods for 
system solving, here it is directly obtained from the nature 
of the system. For solving this problem in case of discrete 
singular systems, it is necessary to specify initial and 
ultimate conditions throughout the system of boundary 
values, with some limitations. Namely, boundary matrices 
should have such form, that it is obvious the system is in 
the normalized form. While stationary discrete singular 
systems are being solved big simplifications are being 
made. In fact, it is significantly simpler to calculate internal 
recursive process. The actual importance of these methods 
is illustrated by the fact that these systems can be found 
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during the estimation of causal systems with some 
limitations and especially taking into consideration that 
most of natural phenomena can be presented better using 
singular systems. 
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Diskretni singularni sistemi sa dvo-tačkastim graničnim problemom 
U radu su izložene metode za rešavanje klase dvo-tačkastih singularnih sistema sa konturnim problemom. Pri 
rešavanju ove klase sistema pomenutim metodama potrebno je rešiti sistem diferencnih jednačina sa dvo-tačkastim 
graničnim uslovom. Značaj ovih metoda je utoliko veći koliko se zna da ova vrsta sistema nalazi sve veću primenu u 
vernom opisivanju brojnih prirodnih fenomena. 

Ključne reči: diskretni sistem, singularni sistem, granični uslovi, dvo-tačkasti granični problemi, ocena stanja. 

Diskretnwe singul}rnwe sistemw so predelxnoj problemoj s 
dvum} to~kami 

V nasto}|ej rabote predstavlenw metodw dl} re{eni} klassa singul}rnwh sistem so predelxnoj 
problemoj so dvum} to~kami. Pri re{enii &togo klassa sistem upom}nutwmi metodami nu`no re{itx 
sistemu raznostnwh uravnenij so predelxnwm usloviem so dvum} to~kami. $tot metod imeet nastolxko 
bolx{ee zna~enie naskolxko izvestno, ~to &tot vid sistem vsë bolx{e polxzuets} v precizionnom opisanii 
mnogo~islennwh naturalxnwh }vlenij. 

Kly~evwe slova: diskretna} sistema, singul}rna} sistema, predelxnwe uslovi}, predelxna} problema so 
dvum} to~kami, ocenka sosto}ni}. 

Systèmes singuliers discrets au problème du contour limite à deux 
pointillés 

Dans ce papier on a exposé les méthodes servant à résoudre la classe des systèmes singuliers avec le problème du 
contour à deux pointillés. En résolvant cette classe de système par les méthodes citées, il faut résoudre le système des 
équations différentielles à condition limite aux deux pointillés. L’importance de ces méthodes est d’autant plus grande 
que l’on connaît que ce genre de système trouve une appliqation de plus en plus grande dans les déscriptions précises 
de nombreux phénomènes naturels. 

Mots clés: système discret, système singulier, conditions limites, problème limite à deux pointillés, évaluation de l’état. 
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