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In this paper, the use of differential and proportional state feedback, as a means for gaining regulability and 
controllability of linear singular systems was investigated. Two approaches were analysed: first which solves the 
problem using geometric approach, and second based on classic automatic control theory. There are numerous 
examples which illustrate efficiency of the given procedures. All results could be applied to regular – non-singular 
systems, bearing in mind the geometric approach. Appropriate transformations for designing state feedback with 
standard controllers are given as well. 
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Introduction 
INGULAR systems appear naturally in many engineer-
ing disciplines and problems, like electric, electronic 

and magnetic circuits, in flight dynamic and robotic prob-
lems, in large energetic systems and feedback systems. 
They appear in control and optimization problems, just as 
in modelling process for some nontechnical disciplines. 

The question is: why do singular systems appear in the 
mathematical modelling process? Which are the reasons for 
the expansion of this relatively young part of control theory 
in the recent times? How is it that this kind of systems did 
not appear in earlier researches? Answer to these questions 
is quite simple. Singularity in mathematical models was 
avoided using appropriate assumptions with substantial 
foundations. Because of that, mathematical model based on 
the adopted system model has had lower proximity level 
with real physical process. For more accurate presentation 
of the physical system, singular system theory was devel-
oped, a theory which supports singularities and treats them 
in an adequate manner. 

To be precise in the following presentation, it is neces-
sary to determine singular system class and input signal 
class which will be subject of this research. In that sense, 
only continuous, time-invariant, stationary singular systems 
with or without input signals are considered. 

Point of interest is the system described by equation: 

 , (1) ( ) ( ) ( )E t A t B t= +x x u�

with singular matrix E. System given in equation (1) could 
be presented with matrix triple ( , , so if matrix E is 
singular it means that system (1) is singular, as well. Oth-
erwise it is said that the system is regular. Very often there 
is a need for a unique theory which can solve the problems 

of both, regular and singular systems simultaneously. One 
of those results could be obtained using singular perturba-
tions. In that process, singular system is approximated with 
idealized regular system in some parts. In that way, boundary 
regular system model is brought closer. Exactly in these 
cases there is a strong need for the development of various 
syntheses methods for developing controllers placed in 
global state feedback. These methods have to be effective in 
designing any kind of generalized automatic control system. 

, )E A B

Singular system described in the regular way is consid-
ered, eq. (1), where  is a generalized n-state vector, of ( )tx

1n×  dimension and  is an input vector, of ( )tu 1m×  di-
mension. Assuming that the considered system is regular; it 
means that det ( ) 0sE A− ≠ . 

It is well know that the state of the system (1) is com-
pletely determined for every  using 0t ≥ (0 )−x  and ( )tu . 
However, due to the existence of endless physical frequent 
modes, ( )tx  could appear as mode with impulse behav-

iour. This usually happens in cases when ( )tu  or deriva-

tives of ( )tu  are discontinue. This, of course, has negative 
consequence because it limits the class of expected input 
functions and system becomes extremely sensitive to noise. 
In those cases the structure of the system needs to be modi-
fied to gain equalized system trajectory. In this paper the 
possibility to apply state feedback in order to exchange end-
less physical frequent modes with final frequent modes 
was investigated. 

The application of proportional state feedback in normal 
systems is well known in control theory and could be found 
in many books and papers. It is also known that eigenvalues 
of normal system (poles) could be transferred to arbitrary 
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final places using state feedback with determinate amplifi-
cation if and only if the system is infinite controllable and 
each system frequency could be arbitrarily distributed and 
if and only if the system is completely controllable.  

Using differential state feedback was not a popular 
method for normal systems. It is quite adequate because 
differential state feedback is less effective than proportional 
state feedback. However, in case of singular systems, which 
are very noise sensitive, it is possible that differential state 
feedback reduces noise sensitivity. Moreover, differential 
state feedback could be used for singular system dynamical 
rank changing. 

Some of the existing methods for finding solutions of 
this type for singular systems are based on Weierstrass's de-
composition to subsystems with infinite and noninfinite 
frequencies. Because the dimension of system with infinite 
frequencies is equal to rank of matrix pencil det ( )sE A− , 
it is necessary to use numerical approach. However, rank of 
matrix pencil det ( )sE A−  is not constant at open sur-
roundings of singular systems. That is why the Weier-
strass’s decomposition method is very often limited on ac-
count of the given reasons. 

Geometric approach in solving proportional-
differential feedback synthesis problem 

In order to solve this kind of problem subspaces family 
{ }θ∑ is defined, where each of subspaces is isomorphous in 
relation to regular system space of values, with characteris-
tic that this subspace family is related to all subspaces of 
the generalized system. A set of regular systems, ones 
which do not have infinite eigenvalues, is denoted with 0∑ . 
Because every family subset θ∑  is opened, generalized 
system given is inner point of each subset to which it be-
longs. Therefore, if system (E, A, B) belongs to θ∑ , control 
design technique applied to θ∑  could be used not only for 
(E, A, B) systems, but for every system which belongs to 
open surroundings of the defined system (E, A, B). 

The next element in the discussed procedure is a group 
symmetrical to { }θ∑  set. It consists of transformation 

group { }Rφ  with the characteristic that Rφ  isomorphly 
transforms θ∑  to θ φ=∑ . 

The third element of the theory allows that feedback 
could be applied to every subset θ∑  with the characteristic 
that it exactly corresponds to that subset. Feedback control 
vector is in the form of:  

 . (2) 
.

( ) ( ) cos ( )sin ( )t F t t tθ θ⎛= −⎜
⎝ ⎠

u x x v⎞ +⎟

Parameter θ  denotes constant value in the feedback. If 
0θ = , then feedback has a static state character. Therefore, 

it can be concluded that the following analysis will include 
most common and practically possible cases.  

Singular System Transformation 

Let  denote space of all matrix triples (E, A, B) 

∈R

(ˆ ,n m∑ )
)

)

nxn x Rnxn x Rnxm. Let  denote subspace of 

 defined by the following relation: 

( ,n m∑

(ˆ ,n m∑

 ( ) ( ) ( ) ( ){ }ˆ, , , , : detn m E A B n m sE A 0∑ = ∈∑ − ≠

)

. (3) 

On condition that polynomial det (sE A−  is not equal 
to zero, this guarantees uniqueness of the system solution, 
given in equation (1). In references, systems belonging to 
subspace ( ),n m∑  are called regular. 

For every Rθ ∈   is defined as a subset of (ˆ ,n mθ∑ )
( ),n m∑  given with next equation: 

 ( )
( ) ( ) ( ){ }

,
, , , : det cos sin 0

n m
E A B n m E A

θ

θ θ
∑ =
= ∈∑ − ≠

 (4) 

Note 1. If 0θ = , ( )0 ,n m∑  consits of triple (E, A, B) for 
which E is non-singular, the system is regular. Therefore 
regular systems build one open subspace of closeness 

( ){ },n mθ∑ . 
Further more, a group of symmetric copy functions 
( ) [ ){ }, : 0,n m θ πθ∑ ∈  - transformation which copy all sub-

spaces one into others is defined.  
For every RΦ ∈ , the defined transformation is 

( ) ( )ˆ ˆ: , ,R n m n mΦ ∑ ∑6  

with the following relation: 

 ( ) ( ), , cos sin sin cos ,R E A B E A E A BΦ Φ Φ Φ Φ≅ + − + . (5) 

If ( ) (ˆˆ , , , ,E A B R E A BΦ≅ ) , then: 

 
ˆ cos sin
ˆ sin cos
E I I E

I I AA
Φ Φ
Φ Φ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⋅⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦
, (6) 

( )ˆˆ ,E A  are got from ( ),E A , using rotation for Φ  angle. 

Further investigations show how positions of eigenval-
ues are changed when the system is in rotation. Expanded 
complex plane ( )U ∞C  and complex projected space 

( )1PC  are defined. Also, relation on  is defined by rela-

tion 

2C

( ) ( )1 2 1 2ˆ ˆ, ,s s s s∼  if and only if there is no null complex 

number λ which fulfils equation ( )1 2 1 2ˆ ˆ( , ) ,s s s sλ= . If 

( ) 2
1 2,s s ∈C , with ( )[ ]1 2,s s  the corresponding element 

from ( )1PC is denoted, i.e. equivalency classes which con-

tain ( )1 2,s s . ( )1 2,s s  are called homogenous coordinates of 

( )[ ]1 2,s s .  

Let (E, A, B) be a regular system, (E, A, B) ∈ ( ),n m∑ . 

It is said that ( )[ ]1 2,s s  ∈  is eigenvalue of the sys-

tem (E, A, B) if and only if det ( ) .  
( )1PC

1 2 0s E s A− =

It can be seen that if ( )[ ]1 2,s s  = [ ]1 2ˆ ˆ( , )s s ], then det 

( )1 2 0s E s A− =  if and only if . Only if 
these conditions are fulfilled, eigenvalues of the system are 
well defined. 

( )1 2ˆ ˆdet 0s E s A− =

Note 2. If ( )[ ]1 2,s s  was the same as expanded complex 

number ( )[ ]1 2,s sα ≅ , it could be concluded that α is the 
system eigenvalue, gained from equation det 
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( )1 2 0s E s A− = . If , than 2 0s ≠ α  is a finite complex num-
ber and it denotes system eigenvalue if and only if det 

. This coincides with the standard definition 
of generalized linear system eigenvalue. If , it is then 
( ) 0E Aα − =

2 0s =
α = ∞  system eigenvalue if and only if det . Mani-
fold of 

0E =
α = ∞  is equal to subsystem dimension with infi-

nite frequency in Weierstrass's decomposition and does not 
depend on Joradn's structure. 

Recent description of infinite eigenvalues is characteris-
tic, because there is no difference between dynamics of im-
pulse modes and nondynamic restrictions. It is more com-
mon to define the value of manifold α = ∞  as a number of 
independent impulse modes i.e. as a degree of det ( )sE A−  
or as rang E. According to definition, the system has full 
number of eigenvalues (finite and infinite) equal to the rang 
of the matrix E. Total number of system eigenvalues is in-
variant to system rotation, as previously mentioned. Since 
rang E is not a customary definition of eigenvalues it does 
not support this infinite values characteristic. 

Note 3. It directly follows from definition of ( ),n mθ∑  

that system (E, A, B) belongs to  if and only if 

there are no eigenvalues in point 
( ,n mθ∑ )
( )[ ]cos , sinθ θ . Then 

, as a set of regular systems consists of systems 
which do not have eigenvalues at infinity. 

(0 ,n m∑ )

)

)

The following result shows that eigenvalues of a general-
ized linear system are moved in case of system rotation. If 
system rotates for an angle , homogenous coordinates of 
eigenvalues rotate for angle - . 

Φ
Φ

Theorem 1. Let ( )  and let 

. Then 

(, , ,E A B n m∈∑

( ) (ˆˆ , , , ,E A B R E A BΦ≅ ( )[ ]1 2,s s  is eigenvalue of 

the system  if and only if [( , , )E A B ]1 2ˆ ˆ( , )s s  is eigenvalue 

of the system , where:  ˆˆ( , , )E A B

 11

22

ˆ cos sin
ˆ sin cos

ss
ss

Φ Φ
Φ Φ

−⎡ ⎤ ⎡ ⎤≅⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
⎡ ⎤⋅ ⎢ ⎥⎣ ⎦

. (7) 

Equivalent to this, expanded complex number α  is ei-
genvalue of the system  if and only if expanded 

complex number 

( , , )E A B

α̂  is eigenvalue of , where: ˆˆ( , , )E A B

 ( )
( )
cos sinˆ
sin cos

Φ α Φ
α

Φ α Φ
−

≅
+

. (8) 

Controllability and Observability Analysis  
Let  be regular system and let R ( ,  be 

controllable subspace.  consists of the states in 
R

( , , )E A B , )E A B
R ( , , )E A B

n which are reachable at positive time from onset state 
. And if , then  are 

called controllable system. If  is linear transformation on 
 an   is subspace in R , 

( )0 − ≅x 0 ( , , ) RnR E A B = ( , , )E A B
P

Rn S n |P S  denote subspace 

, i.e. least  invariant subspace 
which contains . 

( ) ( )1... nS P S P S−+ + + P
S

Lemma 1. If  ∈  and α is a real num-

ber which satisfies det 

( , , )E A B ( ,n m∑ )

( ) 0E Aα − ≠ , then: 

 ( ) ( )1 1R ( , , ) |E A B E A E R E A Bα α− −= − −  (9) 

Theorem 2. The generalized system  is con-
trollable if and only if regular system 

( , , )E A B

( ) ( )( )1, , 1I E A E E A Bα α−− − −

)

 is controllable. 

Given result is explained using Lemma 1. 
Lemma 2. Let  ∈  and let ( , , )E A B ( ,n mθ∑

( ) (ˆˆ , , , ,E A B R E A Bθ≅ )

)
)

)

. Then:  

 . (10) ( ) ˆˆR , , R( , , )E A B E A B=

Theorem 3. ( ,  ∈  is controllable if and 

only is the regular system  is controllable. 

, )E A B ( ,n mθ∑

( , ,R E A Bθ

Corollary 1. Let ( ,  ∈  and let: , )E A B ( ,n mθ∑

( ) ( )
( )

ˆˆ , , , ,
cos sin ,sin cos ,

E A B R E A B
E A E A

θ

θ θ θ θ
−≅

= − + B
. 

Regular normal system  is controllable if and 
only if: 

ˆˆ( , , )E A B

 
( )
( )

1 1 1

11 1

ˆˆ ˆ ˆ, ,...,

ˆˆ ˆn

E B E A E B
rang n

E A E B

− − −

−
− −

=  (11) 

which follows from Theorem 3, so generalized linear sys-
tem  is controllable if and only if condition (11) is 
fulfilled. If 

( , , )E A B
0θ = , than equation (11) is led to controllabil-

ity condition of normal systems. 
In the continuation, the state equation of the system 

given with expression (1) along with linear output equation 
is considered: 

 ( ) (t C t=y x ) , (12) 

where  is real C p x×  matrix. System given by equa-
tions (1) and (17) could be written using symbol 

. Instead of ,  and ( , , , )E A B C ( )ˆ ,n m∑ ( ,n m∑ ) ( ),n mθ∑  

groups , ( )ˆ , ,n m pΓ ( ), ,n m pΓ  and  were de-

fined. Let  space of all matrix groups 
 ∈R

( , ,n m pθΓ )
)(ˆ , ,n m pΓ

( , , , )E A B C nxn×Rnxn×Rnxm×Rpxn be denoted. Let 

( ), ,n m pΓ  denote open subspace of  defined 
by: 

(ˆ , ,n m pΓ )

 
( )

( ) ( ) ( ){ }
, ,

ˆ, , , , , : det 0
n m p

E A B C n m p sE A
Γ

Γ
≅

∈ − ≠
 (13) 

Let ( ), ,n m pθΓ  be a subspace of  given 
with: 

( , ,n m pΓ )

 ( ) ( ) ( )
( )

, , , , , :, , det cos sin 0
E A B C n m pn m p E Aθ

Γ
Γ

θ θ
∈⎧ ⎫≅ ⎨ ⎬− ≠⎩ ⎭

 (14) 

Accepting the notation given, symbol  is adopted as a RΦ
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sign for function onto  given as follows: (ˆ , ,n m pΓ )

)C
  (15) ( )

(
, , ,

cos sin , sin cos , ,
R E A B C

E A E A B
Φ

Φ Φ Φ Φ
≅

+ − +

Further, some relations between system rotation and its 
observability are examined. Let (  denote a regu-
lar system and let K  denote nonobservable 
subspace. K  consists of some states 

, , , )E A B C
( , , , )E A B C

( , , , )E A B C 0x  with 
the characteristic that if , than , then 

the system response is identically equal to zero on 
( ) 00− =x x ( )0 − =y 0

[ ]0,∞ . 
 is observable if K , or equiva-

lently, if  together with input and output on 
( , , , )E A B C ( , , , ) 0E A B C =

( )0 −y [ ]0,∞  it 

presents sufficient condition for determination of ( )0−x . 

Lemma 3. If ( ∈, , , )E A B C ( ), ,n m pΓ  and if α  denotes 

a real number which fulfils condition det ( ) 0E Aα − ≠ , 
then it is: 

 ( ){ }1
1

0
( , , , )

n i

i
E A B C N C E A Eα

−
−

=

⎡ ⎤= −⎣ ⎦∩  (16) 

Theorem 4. Generalized system  is observ-
able if and only if regular system 

( , , , )E A B C

( ) ( )( )1 1, , ,I E A E E A B Cα α− −− −  is observable. 

Using Lemma 3, it is possible to prove the following re-
sult. 

Lemma 4. Let ( ∈  and let 

. Then the following applies:  

, , , )E A B C ( , ,n m pθΓ )

)( ) (ˆˆ , , , , , ,E A B C R E A B Cθ−≅

 K (  = K , , , )E A B C ( )ˆˆ , , ,E A B C . (17) 

Proof. If sin 0θ = , the equation is trivial, so it could be 
assumed that sin 0θ ≠ . Because   is normal 

system, then: 
( ˆˆ , , ,E A B C )

 K ( ) =ˆˆ , , ,E A B C ( )
1

1

0

ˆˆ
n i

i
N C E A

−
−

=

⎡ ⎤
⎢ ⎥⎣ ⎦∩ , (18) 

where  is the biggest invariant subspace in 1 ˆÊ A− ( )N C . 
Let cos / sinα θ≅ θ

)

}

. Because of 
∈ , det(αE-A) ≠ 0, and according to 

Lemma 3 it is: 
( , , , )E A B C ( , ,n m pθΓ

 ( ){1
1

0
K( , , , )

n i

i
E A B C N C E A Eα

−
−

=

⎡ ⎤= −⎣ ⎦∩ . (19) 

biggest (αE-A)-1E invariant subspace included in ( )N C . 

From the proof of Lemma 2 it is known that  and 
 have the same invariant subspaces. From the 

equation (17) and (18) follows that K =system 
. 

1 ˆÊ A−

( ) 1E A Eα −−

( , , , )E A B C
( , , )E A B θ  is chosen to fulfil equation ( , ∈ 

. Using rotation of the system for angle 
, )E A B

( ,n mθ∑ ) θ−  nor-

mal system ( )  is ob-
tained. 

( ) (0 0 0 0, , , , ,E A B R E A B n mθ−≅ ∈∑

1. Rotation for obtaining the requested performances. 
First of all, it is necessary to define the required charac-
teristics of a normal system ∈0 0

ˆˆ( , , )E A B ( )0 ,n m∑  
which a system needs to have in order for the system 

≅ ∈ to fulfil the required 
performances in the synthesis procedure. 

ˆˆ( , , )E A B 0 0
ˆˆ( , , )R E A Bθ ( ,n mθ∑ )

2. Solving synthesis problem for normal system 
( )0 0, ,E A B . Amplification matrix F  is chosen first, for 

the normal system with closed feedback , ob-
tained from 

0 0
ˆˆ( , , )E A B

( )0 0, ,E A B  from state feedback and control 
algorithm F= +u x v , to satisfy the prescribed perform-
ance from step 2. Please note that =0 0

ˆˆ( , , )E A B ( )0g F  

( )0 0, ,E A B . 

3. Last synthesis step 
PD control law is applied: 

 , (21) 
.

( ) ( ) cos ( )sin ( )t F t t tθ θ⎛= −⎜
⎝

u x x v⎞ +⎟
⎠

For original generalized system  using amplifi-
cation 

( , , )E A B
F , defined at step 3.  

Note 4. It is clear that the solution of the problem given 
demands two results. It is necessary to solve synthesis feed-
back problem for normal system, step 3, and also to know 
how certain system characteristics behave when the system 
is in rotation, for e.g. where the poles of the system are, 
step 2. 

Note 5. Because the given regular system  be-
longs to 

( , , )E A B

( ),n mθ∑  for each [ ]0,θ π∈  it is possible to treat 
θ  as synthesis parameter, which needs to be determined. 

Note 6. According to Note 4, it can be concluded that 
there are some other analogous procedures for determining 
the control with output feedback. In that case, synthesis 
problem for output feedback system needs to be solved. 

Example 1. Considering normal system ( ), ,E A b,c,d , 
where: 

1 0
0 1E ⎡ ⎤= ⎢ ⎥⎣ ⎦

, , ,  0 1
0 0A ⎡ ⎤= ⎢ ⎥⎣ ⎦

0
1
⎡ ⎤= ⎢ ⎥⎣ ⎦

b

1
2
⎡ ⎤= ⎢ ⎥⎣ ⎦

d , [ ]1 1= −c . 

Because ( )R d  is not a part of , it is clear that the 
state feedback does not solve the problem. Considering 

( )EN c
θ  

as a parameter which needs to be determined, a necessary 
condition for problem solving is: 

 ( ) ( ) ( )cos sin .R E Aθ θ⊂ −d N c  (22) 

It is obvious that the previous relation is fulfilled if and 
only if 1/ 2tgθ = . Using the stated fact, 5F δ δ⎡ ⎤= −⎣ ⎦ is 

obtained, where δ  could be chosen arbitrarily. For every 
δ , except for 2 5δ = , the resulting system is regular. 

Example 2. The system is considered, with ma-
trices given: 

( , ,E A b)

)
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0 1
0 0E ⎡ ⎤= ⎢ ⎥⎣ ⎦

, , .   1 0
0 1A ⎡ ⎤= ⎢ ⎥⎣ ⎦

0
1
⎡ ⎤= ⎢ ⎥⎣ ⎦

b

( ), ,E A b ∈  or every not null ( ,n mθ∑ ) θ . Then: 

0
sin cos
0 sinE θ θ

θ
−⎡ ⎤= ⎢ ⎥−⎣ ⎦

,  

0
cos sin

0 cosA θ θ
θ

⎡ ⎤= ⎢ ⎥⎣ ⎦
.  

Ordinary normal system, associate system given 
  is , where is: ( )0 0, ,E A b ( )1 1

0 0 0,E A E− − b

2
1

0 0
csc

0
ctgE A

ctg
θ θ

θ
− − −⎡ ⎤= ⎢ ⎥−⎣ ⎦

,  

1
0

csc
csc

ctgE θ θ
θ

− −⎡ ⎤= ⎢ ⎥−⎣ ⎦
b . 

If θ is approximately zero, then system  is al-

most singular, and the characteristics of  ap-
proach eternity. 

( )0 0, ,E A b

( 1 1
0 0 0,E A E− − b)

)

In order to escape computing problems connected with 
solving synthesis problems for almost singular regular sys-
tems, it is advisable to choose θ in the way that the system 

 is inside . In other words, system ei-
genvalues in open circuit would not have to be near 
( , , )E A B ( ,n mθ∑

ctgθ . 
Different problems appear if the desired eigenvalues are 
near ctgθ  point. In that case state amplification, defined 
with matrix F in step 3, has to be chosen in that way in or-
der for the closed normal system ( )0g F   to 
have eigenvalues close to infinite. 

( )0 0, ,E A b

Example 3. In this example ( ), ,E A b  are chosen in the 
same way as in Example 2. Presuming that the desirable ei-
genvalues of the closed system are in point -1 with multi-
plication 2, in resulting PD feedback with the control law 
given:  

 , (23) 
.

( ) ( ) cos ( )sin ( )t F t t tθ θ⎛= −⎜
⎝ ⎠

u x x v⎞ +⎟

elements of the matrix are: 

 1
sin

1 sin 2f θ
θ

−=
+

, 2
2sin cos

1 sin 2f θ θ
θ

− −=
+

 (24) 

If  elements of the matrix (3 / 4 1ctgθ π θ→ → )− F  
tend to infinity. This possible problem could be avoided 
choosing θ  so ctgθ  is not close to any desired eigenvalue. 

Classical approach to solving synthesis problem for 
proportional-differential feedback 

In this part of the paper, regulation problems of linear 
singular system considering geometric approach are given. 
Methodology given in this part is based on classical ap-
proach for this kind of problems, which in form of neces-
sary and sufficient conditions gives the possibility for in-
troducing proportional-differential feedback for regulariza-
tion of the given singular system. Base investigation, which 
is the outset for further results, could be found in  

Mukandan, Dayawansa (1984). 
It is important to point out that it is assumed that matri-

ces E, B, A, are defined in the field of real numbers, even if 
most problems of this kind could be solved for matrices 
with complex numbers. Controllers have constant amplifi-
cation, unless stated otherwise. 

All matrix forms of ( )sE A−  type, ( )sE A BF− − , 

( )1 2sE sBF A BF+ − −  from this point on are considered to 
be non-singular. 

Regularization of Singular System 
The importance of achieving system regularity is illus-

trated by the fact that a regular system can be transformed 
into normal system and after this treated in the customary 
way. Classic automatic control theory could be applied in 
case of a system prepared in this way. PDF has the follow-
ing form  

 . (25)  
.

1 2( ) ( ) ( ) ( )t F t F t t= − + +u x x v

In that case, system with feedback has the form given by 
equation (26): 

 . (26) 
.

1 2( ) ( ) ( ) ( ) ( )E BF t A BF t B t+ = + +x x v

Definiton 1. System with closed feedback given in eq. 
(26) could be regular if using PDF where there is a matrix 

1F  with the characteristic that the matrix pencil ( )1E BF+  
is non-singular. 

Theorem 6. System could be transformed into a regular 
one using PDF if and only if matrix [ ]E B  has full rang. 

Proof. Without loosing overall concept, it could be as-
sumed that  is of the form: [ ]B 0 T

mI . 
Existence of a 1F  matrix with the characteristic that 

( )1E BF+  is non-singular, provided that first ( )m n−  rows 
of matrix  are linearly independent. It follows that matrix 

 has full row rang. On the other hand, if [
E

E ]E B  is of full 

row rang, first ( )n m−  rows of matrix E are linearly inde-
pendent. According to that, it is possible to choose matrix 

1F , as matrix pencil ( )1E BF+  to be non-singular. Let im-
plications of Assumption 1 in the sense of system controlla-
bility characteristics be considered. 

For example, considering the system given by eq. (1), it 
is obvious that the system is not infinity controllable, 
Verghese (1978), Verghese et.al (1981). Considering the 
transformed form of that system, where: 

1 1 1

2 2
, ,0

E A BE A B ,A B
⎡ ⎤ ⎡ ⎤ ⎡= = = ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (27) 

with full row rang matrix . Division is done in the way 
that the number of rows in matrices , 

1E
1E 1A  and  are 

equal. Since system (1) is not infinity controllable, then ma-
trix: 

1B

 1

2 2

0 ,E
A B
⎡ ⎤
⎢ ⎥⎣ ⎦

 (28) 

does not have full row rang.  
Keeping in mind that matrix  can not have full row 2B
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rang it follows that matrix:  

  (29) 1

2

0 ,0
E

B
⎡
⎢⎣ ⎦

⎤
⎥

and matrix [ ]E B  will not have full row rang. 
This result can be proclaimed using the following as-

sumption. 
Theorem 7. The necessary condition, in order to gain 

system regularity of the system given by eq. (1), is that the 
system has to be infinitely controllable. 

Proof. If system, given by eq. (1) is not infinitely con-
trollable, then [ ]E B  will not have full row rang. There-
fore, according to Assumption 1, the system is not regulable 
and can not be regularized.  

System synthesis using state feedback – modal 
control of linear singular systems 

Considering infinitely controllable linear singular sys-
tem, it is possible to transform the initial equations into 
forms where variables are divided into nondynamic and dy-
namic, Verghese (1978), Verghese et al (1981). This could 
be done using appropriate linear non-singular transforma-
tion and multiplication of matrices  and  from the 
left side with adequate non-singular matrix. 

,E A B

Kronecker’s form of singular matrix pencil should be 
considered especially: 

 

0 0
}( ) 0 0 }0 0

}0
}0

sI J
rsE A I sJ n rI

rsE A
n rI

⎡ ⎤−
⎢ ⎥− = −⎢ ⎥ −
⎢⎣

−⎡ ⎤= ⎢ ⎥ −⎣ ⎦

�
�

⎥⎦  (30), 

where J�  consists of several nilpotent Jordan’s blocks, each 
with rang two or more.  

Partitioning of matrix  and vector  is done ac-
cording to the following rule: 

B ( )tx

 0
}
}

B rB n rB
⎡ ⎤= ⎢ ⎥ −⎣ ⎦

 , 0
}
}

x r
n rx

⎡ ⎤= ⎢ ⎥ −⎣ ⎦
x . (31) 

Let J be a matrix in Jordan’s form with special Jordan’s 
blocks 1̂J , 2Ĵ ,..., ˆ

kJ  from J. Let rows of matrix B, which 
are correspond the rows on the last position of 1̂J , 

2Ĵ ,..., ˆ
kJ , written as , ,..., , respectively be consid-

ered. Infinitely controllable implies that rows , ,...,  
are linearly independent. According to that, it could be 
stated that matrix is: 

1̂b 2̂b k̂b

1̂b 2̂b k̂b

 
0 0

0 0
ˆ0 0

I
B

J

⎡ ⎤
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

,  (32) 

with full rang. Likewise, according to definition of Vergh-
ese (1978), Verghese et al (1981) zeroes of ( )sE A−  are in 

the same time zeroes of the matrix pencil ( )sE A− . 
In the presupposition, some lemmas, used for further in-

vestigations are given. It should be noted that all matrix 
forms of type ( ) ,sE A−  ( )sE A BF− − , 

( )1 2sE sBF A BF+ − −  in the following part, are regular 
(non-singular). 

Lemma 5. Let matrix pencil be considered: 

 1

2
( ) sE AsE A sE A

−⎡− = ⎢ −⎣ ⎦
⎤
⎥ , (33)  

where pencil ( ) ,sE A−  has full rang. Any null of matrix 

( )1 1 ,sE A−  will be a null of matrix ( ) ,sE A− . 
Lemma 6. Considering matrix pencil further provides: 

 ( ) [ ]sE A sE AB− = −�� . (34)  

Matrix  has full column rang. It is assumed that matrix B
( ) ,sE A−  is non-singular and that there are no infinite nulls 
(zeroes). 

In that case, a matrix F  exists, with the characteristic 
that [ ( )]sE A BF− +  has arbitrarily given finite zeroes, if 

and only if matrix ( )sE A− ��  has no zeroes. Further more, 
the total number of zeroes of [ ]sE A BF− −  is independent 
of F . 

In the following lines control applied to linear singular 
system using proportional feedback will be reviewed. The 
possibility for translating finite and infinite frequency of 
poles onto arbitrarily chosen location for singular linear 
system is considered. In that sense, it is very important to il-
lustrate significance controllability, complete controllability 
and infinite controllability. 

Theorem 8. Infinite zeroes of the matrix pencil 
( ) ,sE A−  for system given with eq. (1) could be translated 
to any arbitrary location if and only if the system is of infi-
nite controllability. Further more, generalised dynamic se-
ries of the system (1) (ti. total number of independent fre-
quent modes) is invariant of feedback matrix. 

Taking into account that the total number of zeroes stays 
the same when proportional feedback is applied, synthesis 
system matrix [ ]sE A BF− −  has no zeroes at infinity. Ac-
cording to that, space of zeroes of the matrix pencil 
[ ]sE A BF− −  is equal to the space of finite zeroes of the 
matrix pencil [ ]sE A−  and zeroes of matrix 

2 2 21 22[ (I sJ B F F )]− + + . Second space of zeroes on the 
right side could be chosen arbitrarily, to correspond infinite 
zeroes of the matrix pencil [ ]sE A−  and the numbers of 
that zeroes is equal. 

Further theorem expansion is by natural isomorphism of 
controllability and possibility to regulate eigenvalues of 
normal (classic) systems defined by their own matrix mod-
els in case linear singular systems are given with state vec-
tor differential equation and output equation.  

Therem 9. Finite and infinite zeroes of the matrix pencil 
 [ ]sE A−  for system given in eq. (1) could be translated 
onto arbitrary locations using state proportional feedback if 
and only if the system (1) is completely controllable, which 
implies that all finite and infinite modes are controllable in-
dividually. 

Modal Control of Singular Systems using 
proportional and differential feedback 

In previous considerations it was found that the general-
ised dynamic rank of feedback system is invariant of feed-
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back matrix, when the system is controlled using only pro-
portional feedback. In every case, the number of general-
ized state values which are a part of singular system dy-
namic is greater then its generalized dynamical system rang 
Verghese (1978), Verghese et.al (1981). The influence of 
proportional and differential feedback for generalized dy-
namical rang of the system are investigated here. Control 
law is given in the standard way, eq. (25).  

Theorem 10. Matrices 1F  and 2F , with the characteris-
tic that a closed singular system ( )1 2sE sBF A BF+ − −  has 
no infinite zeroes, exist if and only if matrix pencil 
[ ]sE A sB−  has no infinite zeroes. Further, matrix 1F  can 
be chosen in the way that the dynamical rang of feedback 
system could be any value between: 

  and . (35) { [ ] ( )rang E B rang B− } ( )rang B

Hence, it can be concluded that the infinite controllabil-
ity is necessary and sufficient regularity condition. 

Theorem 11. Matrices 1F  and 2F  with the characteristic 
that ( 1 )2sE sBF A BF+ − −  has arbitrarily given zeroes exist 
if and only if singular system (1) is controllable and it 
[ ]sE A sB−  has no infinite zeroes. 

Control of Regulable Systems using feedback 
From this point on, the control of regulable systems us-

ing proportional state feedback is investigated. 
The main idea of this approach is based on the fact that if 

a system is regulable, using non-singular linear transforma-
tion, the system could be transformed into a form typical 
for normal (classical) systems in state space. 

Theorem 12. It is assumed that the system given by eq. 
(1) is regulable. PDF state feedback could be used for as-
signing eigenvalues (real or complex) to system with feed-
back, if and only if all frequent system modes, eq. (1), are 
controllable. 

It is obvious from this assumption (theorem) that assign-
ing eigenvalues to regulable systems is exclusively con-
nected with the characteristics of the matrix pencil 

1 1( )sE A−  and that the assortment of matrix 1F  does not af-
fect the procedure (except for amplification assignment for 
proportional controller in state feedback) unless feedback 
system, after control introduction, is regular. 

Theorem 13. It is supposed that the basic system is 
regulable. Also, that matrices 1̂F  and 2̂F  are chosen in the 
way that  and  are non-singular matri-
ces. Control law is given by equation: 

1̂( )E BF+ 2̂(E BF+ )

 . (36) 1 2
ˆ ˆ( ) ( ) ( ) ( )t F t F t t= − + +u x x v�

There exists a matrix 2F� , such that the eigenvalues of 
the system structure with feedback is isomorphic to system 
eigenstructure with feedback and the control law given 

 . (37) 1 2
ˆ( ) ( ) ( ) ( )t F t F t t= − + +u x x v��

Firstly, from the stated assumption nothing could be 
learned about the controllability of the system finite modes, 
eq. (1). 

Secondly, if the system is regulable, it could be easily 
seen that almost every matrix 1F , with appropriate dimen-
sion, could serve regulability of closed feedback system and 

the control law given 

 1( ) ( ) ( )t F t t= +u x v� .  (39) 

Numeric and illustrative examples 
Basic goal of the things displayed here is to show that 

many of fundamental results obtained using feedback for 
normal systems, could be extended to regulable systems, 
through the procedure called regulability (transforming 
regulable systems to regular systems) and performed using 
differential state feedback. 

Example 4. In the following part there is an illustration 
of application of the PDF feedback for controlling linear 
singular systems. 

   (40) 1 2 1 1

2 2

( ) 0 1/ ( ) 0 ( )0 0 ( ) 1 1 ( ) 1
C C x t r x t u tx t x t
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

�
�

 

Figure 1 ( )1x t  is a voltage through condenser , 1C ( )2x t  is a voltage 

through condenser . Input value is voltage  2C ( )u t

It is obvious that a large variety of differential feedback 
laws could be chosen for regulability electric circuit given, 
for this is obviously a linear singular system, eq. (40).  

Let the feedback control law, which will serve for regu-
lability system, be given in the form: 

  (41) 
.

1 1( ) ( ) ( )u t R C x t v t= − +

 

Figure 2. ( )v t  is a new input value 

Modified state equation now has a different form:   

  (42) 1 2 1 1

1 1 2 2

0 1/ 0 ( )0 1 1 1
C C x r x v tR C x x

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
�
�

therefore, for every 1 0R ≠  the system is regular, e.g. ma-
trix  is not singular any more. Physical interpretation of 
the new system is given in Fig.3. It is clear that further pro-
ceedings connected to the system obtained in this way re-

E
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duced to well known control processes of non-singular e.g. 
normal systems.  

 

Figure 3.  1 1 1 1 2 1 2( ) / ( )u v R C x t R R x x= − − +

Keeping in mind that system, presented by eq. (42), is 
closely controllable (all finite and infinite modes are con-
trollable), it is valuable to notice that, in Fig.4, there are dif-
ferent possibilities for proportional feedback effects on dy-
namical behaviour of the whole system. 

 

Figure 4. 3 41
1 1 1 1 2 2

2 3
( ) R RRu v R C x x x xR R

+= − − + +�  

Conclusion 
In the first part of this paper synthesis proceeding of lin-

ear singular system using geometric approach is given. At-
tention was especially paid to controllability and ob-
servability concepts. According to that, it is shown that in 
the case of regular system matrix E, eq.(1), conditions are 
reduced to the well known classical linear system results.  

Proportional and differential state feedback is investi-
gated as a method for control of singular systems. It is 
shown that controllability of infinite frequency modes plays 
a basic role in poles (zeroes) translation process for regular-
ity of singular systems. It is further shown that in transla-
tion process of infinite poles nondynamic variables do not 
play any role. 

The relation between structure determination of regu-
lable systems and regular system itself is explicitly given. 

Results obtained are followed by appropriate numerical 
examples, which clearly show applied methodology and 
practical usage of feedback controllers for regularity proce-
dure and/or poles adjustment of linear singular automatic 
control systems. These results could be successfully used 
for synthesis of optimal singular systems and/or their esti-
mation.  

Appendix A – Some basic facts from  
Singular System Theory 

According to what has previously been said, the system 
described by equations:  

 ( ) ( ) ( )E t A t B t= +x x u� , (A1)  

 , (A2) ( ) ( )i t C t=x x

where matrix  is singular matrix, is called singular sys-
tems. In this case, considered values arethe following: vec-
tor value , which is called system state,  is input 
vector or vector of input values, where  is the output 
vector or vector of output values.  and 

E

( )tx (t)u
( )i tx

E A  are, in this 
case, obligatory square matrixes of appropriate arbitrarily 
chosen matrices of appropriate dimensions. 

 Consistency of Primordial Conditions 
For distinction of classical method of differential equa-

tion solving, given by Coushe’s problem, there are limits 
applied on singular system primordial conditions. The basic 
reason for this is the existence of algebraic equations which 
mathematically imply the impossibility of accepting all pri-
mordial conditions. The primordial conditions which are 
acceptable, in the sense of generation smooth and not im-
pulse solutions, are called consistent primordial conditions. 

Let primordial value of the state vector be observed: 

 , (A3) 0(0) =x x

which, beside states from eq. (A1–A2), defines primordial 
(initial) condition problem. Under the assumption that state 
vector of initial conditions satisfies the consistency condi-
tions, there are unique solutions and smooth solutions. For 
classic (normal) systems uniqueness of solutions is guaran-
tied. Generally speaking, in case of singular systems 
uniqueness of solutions can not be guarantied. By the fol-
lowing example the previous statement will be illustrated 
most adequately. 

Example A1. The following singular system is consid-
ered: 

 1 1

2 2

1 0 0 1
1 0 0 1 2

x x t
x x t

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
�
� . (A4) 

It is clear that the value for 1x�  to fulfil equations 
1 2x x t= +�  and 1 2 2x x t= +�  for  could not be found. 0t ≠

Example A2. 
The singular system given is consideed: 

 1

2 2

1 0 0 1
0 0 0 0

1x x
x x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
�
� , (A5) 

where 1x  depends on 2x , whence 2x  could be arbitrarily 
chosen. 

It is clear from previous two examples that the solutions 
of the system given are not unique, meaning that, generally 
speaking, uniqueness could not be guarantied. Therefore, a 
question logically imposes itself: which are the conditions 
necessary to fulfil in order to obtain unique solutions for the 
system given by equations (A1-A3)? To get the answer to 
this question it is necessary to define the notion of consis-
tence beginning vector. 

Definition A1.  is consistent initial vector of the sys-
tem given by eq. (A1-A2) if there is at least one solution 

0x
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whose initial condition satisfies the condition  0(0) =x x . 
Theorem A1. Singular system, given by equations (A1-

A2) with consistent initial vector, eq.(A3) has unique solu-
tions if and only if complex scalar s  such as 1( )sE A −−  ex-
ists. 

A complete proof of this theorem will not be given, 
rather only a sketch which is based on the fact that if the 
former inversion exists, solution could be found using 
Laplace transformation. 

Even after finding conditions that ensure solution 
uniqueness, the question about solutions remains open. 
There are four basic ways for solving linear singular system 
with associate consistent initial conditions. They are: 
− Reduction of the system order, until reaching derivation 

state vector, and after that, derivation of the system of 
lower rank. Proceeding is well known as diminishing of 
system rang (dimension). 

− Solution in time domain using Drazin inverse. 
− Approximation of singular system with sequences which 

are not singular. In this case solutions are given as bor-
der occurrence of system singularity. 

− Solutions obtained using Laplace transformation. 

Reduction of system order 
Let singular system given by equations (A1-A2) be con-

sidered. Suppose that system could be transformed and 
shown as matrix block, as it is given: 

 , (A6) 1 1 1

2 2
( ) (t) (t)E A BtO A B

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
x x� u

where  is dimension of the system,  is null matrix, 
which is obtained as sub-matrix of , with characteristic 
that it is a singular matrix of the biggest rang. If the expres-
sion which comprises linearly independent

n O
1E

2A , than r  state 
could be eliminated using the equation: 

 . (A7)  2 2(t) (t)A B+ = 0x u

Resulting equations, after eliminations, is of the form: 

 . (A8) 3 3 3 4( ) (t) (t) ( )E t A B B t= + +x x u u

Eq.(A8) still could not present a regular system. In that 
case the procedure is continued until non-singular system 
appears or trivial system solution appears ( ).  0E =

To carry out the previous algorithm depending on 
whether equation where linearly independent  2A  exists (it 
means that this matrix has rang equal to the order). Next 
theorem shows that 2A  will be of full rang always when the 
system, given by eq.(A6), has unique solutions.  

Theorem A2. System is given by eq.(A6) with consis-
tent initial vector . Matrix 0x 2A  has full rang and the sys-
tem has unique solution. 

Proof. It is known that a system has unique solutions if 
and only if there is inversion of the matrix pencil ( )sE A− . 
Forming matrix pencil ( )sE A− , together with eq.(A6), fol-
lowing matrix is obtained: 

 1 1

2
( ) sE AsE A A

−⎡ ⎤− = ⎢ ⎥−⎣ ⎦
 ; (A9) 

matrix is invertible only if columns of matrix 2A  are line-
arly independent. 

Reduction of the system order and reduction of the sys-
tem state always lead to solutions under conditions given. 
The advantage of this method is that the problem is reduced 
to solving normal system problem, with very good theoreti-
cal bases. Main deficiency of this approach is the fact that 
equations in the system description could be algebraically 
complicated. The next example illustrates the previous 
facts. 

Example A3. Let a singular autonomous system be de-
scribed by the following equation: 

 1

2 2

1 1 1 0
0 0 0 1

1x x
x x

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
�
� . (A10) 

System given by eq. (A10) is obviously singular. Using 
the method given, reducing the system state the following is 
obtained: 

 1 1x x=�  , (A11)  

where 2x  is equal to zero. Initial condition is consistent for 
2 (0) 0x = . 
Reducing the system order, it is not possible to obtain 

nonconsistent initial conditions. However, it is worth men-
tioning that nonconsistent initial conditions are responsible 
for impulse behaviour of the system.  

Solutions in time domain  
General solution of a singular system in time domain is 

given by the following expression: 

 

0
ˆˆ ˆ ˆ( )

0
ˆ ˆˆ ˆ

1
( )

0

( )
ˆ ˆ ( )

ˆ ˆˆ ˆ ˆ ˆ( ) ( 1) ( )

D D

D D

o

E A t t EE

tE At E A D

t
k

D i D i D i

i

t e
e e E B d

( )I EE EA A B t

τ τ τ

− −

−

−

=

= +

+ +

+ − −

∫
∑

x x
u

u

  (A12) 

where: 

 

1

1

1

ˆ ( )
ˆ ( )
ˆ ( )

E sE A E
A sE A A
B sE A B

−

−

−

= −
= −
= −

, (A13) 

Index “ ” denotes Drazin’s inverse, and ( ) denotes i – 
th derivation of time. 

D i
I  is unit matrix with appropriate or-

der, 0 ( )t0=x x  is consistent initial vector, while s  denotes 
the complex variable. Solution does not depend on the 
value s , so eq.(A12) is correct for any value of s. 

General solution given by eq.(A12) is valid only for con-
sistent initial vectors, while for nonconsistent initial vectors 
equation does not give valuable solutions. Some methods, 
besides the consistent ones, deal with nonconsistent initial 
conditions. 

Sequential approximation of linear singular 
systems 

Singular system could be approximated by sequences 
and behave as normal system in those parts. Basic idea be-
hind this procedure is that the singular matrix has to be 
close to regular one. Proximity could be determined as a 
very small value which almost does not influence the dy-
namical behaviour of the system. Following that, the sys-
tem response could be treated as boundary value of normal 
system. The next example will illustrate the stated.  
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Example A3. Infinitesimal value ε  is added to elements 
of the singular system matrix eq.(A10), so the new system 
has the form: 

[6] Circuits, Systems and Signal Processing, Special Issue: Recent Ad-
vances in Singular Systems, 8 (3) (1989). 

 1

2 2

1 1 1 0
0 0 1

1x x
x xε

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡=⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣
�
�

⎤
⎥⎦

1⎤ ⎤
⎥ ⎥⎦

. (A14) 

[7] DEBELJKOVIĆ, Lj. D., MILINKOVIĆ, S. A. JOVANOVIĆ, M. B. 
Kontinualni singularni sistemi automatskog upravljanja, GIP Kul-
tura, Beograd, 1996. 

[8] DEBELJKOVIĆ, Lj. D., MILINKOVIĆ, S. A. JOVANOVIĆ, M .B. 
JACIĆ,LJ.A. Diskretni singularni sistemi automatskog upravljanja, 
GIP Kultura, Beograd, 1998. 

Motion of the singular system is determined by the equa-
tion:  [9] GANTMACHER, R. F., The Theory of Matrices , Chelsea Publishing 

Company, New York, 1977,Vol.I, Vol.II 

     (A15) 
( )( )/

1
( / )2 2

1/(1 ) (1/ )( ) (0)
( ) (0)0 (1/ )

tt t

t

e e ex t x
x t xe

ε

ε

ε ε
ε

−− −

−

⎡ + −⎡ ⎤ ⎡= ⎢⎢ ⎥ ⎢⎣ ⎦ ⎣⎣ ⎦
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Sinteza generalisanog linearnog singularnog sistema proporcionalno 
diferencijalnom globalnom povratnom spregom 

U ovom radu se razmatra upotreba proporcionalne i diferencijalne povratne sprege po stanju, kao mogućnost za 
postizanje regularnosti i upravljanja linearnim singularnim sistemima. U tom smislu analizirana su dva pristupa, 
prvi koji problem posmatra sa geometrijskog aspekta i drugi koji se ovom problematikom bavi sa kalasičnog 
stanovišta. Brojnim primerima ilustrovana je efikasnost izloženih procedura. Izloženi rezultati mogu se primeniti i na 
normalne – nesingularne sisteme imajući u vidu geometrijski prilaz problemu. U tom cilju date su i odgovarajuće 
transformacije nakon kojih je moguće projektovati povratnu spregu, sa odgovarajućim uskladnikom, standardnim 
metodama. 

Ključne reči: singularno upravljanje, singularni sistem, sinteza sistema, upravljanje sistemom, linearni sistem, 
proporcionalno diferencijalno usklađivanje. 

Sintez universalxnoj linejnoj singul}rnoj sistemw 
proporcionalxno differencialxnoj ob|ej obratnoj sv}zxy 

V &toj rabote rassmatrivaets} upotreblenie proporcionalxnoj i  differencialxnoj obratnoj sv}zi po 
sosto}niy, kak vozmo`nosti dobivatxs} regul}rnosti i upravleni} linejnwmi singul}rnwmi sistemami. 
V &tom smwsle analizirovanw dva podhoda, pervwj rassmatrivay|ij problemu, so geometri~eskoj 
pozicii i vtoroj, kotorwj zanimaets} &toj problemoj so klassi~eskoj to~ki zreni}. Mnogo~islennwmi 
primerami predstavlena &ffektivnostx privedennwh tehnik. Privedennwe rezulxtatw mogut primenitxs} 
i dl} normalxnwh - nesingul}rnwh sistem ime} v vidu geometri~eskij podhod k &toj probleme. So takoj 
celxy danw i sootvetstvuy|ie transformacii, posle kotorwh vozmo`no proektirovatx obratnuy sv}zx, 
so sootvetstvuy|im soglasovatelem, i to standartnwmi metodami. 

Kly~evwe slova: singul}rnoe upravlenie, singul}rna} sistema, sintez sistem, upravlenie sistemoj, 
linejna} sistema, proporcionalxnoe differencialxnoe regulirovanie. 

La synthèse du système linéaire singulier généralisé au moyen des 
réactions globales proportionnellement différentielles 

Dans ce travail nous avons examiné l’emploi des réactions proportionnelles et différentielles de l’état comme une 
possibilité d’obtenir la régularité et la commande des systèmes linéaires singuliers.A cet effet nous avons analysé deux 
approches:la première considère le problème du point de vue géométrique, alors que la seconde traite ce problème de 
manière classique. L’efficacité des procédés exposés est illustrée par de nombreux exemples.Ayant en vue l’approche 
géométrique du problème, les résultats présentés peuvent s’appliquer aux systèmes normaux non-singuliers. Dans ce 
but sont données les transformations appropriées, après lesquelles il est possible de projeter des réactions avec un 
controleur convenable au moyen des métodes ordinaires. 

Mots clés: commande singulière, système syngulier, synthèse du système, commande du système, système linéaire, 
régulation différentielle proportionnelle. 
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