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This paper considers several different parameters of a rocket launcher (thrust level, rocket mass, launch ramp length,
and others) which have the greatest effect on its dynamic stability. A relatively simple mechanical model, with both
rigid and deformable elements, is formed for the purpose of stability analyses. The dynamic stability of the rocket
launcher, as well as the launch ramp as its component subassembly, has been examined. The resulting analytical ex-
pressions have been verified by a numerical example for a real object. The actual results can be useful to engineers in
the process of designing new or reconstructing the existing rocket systems, as well as to the technical support service
responsible for issuing regulations regarding the handling this type of artillery armament.
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Introduction

A rocket launcher belongs to the group of the artillery
weapons intended for destruction of the enemy per-
sonnel as well as for destruction of certain points deep in
the enemy rear. Therefore, military theorists classify it in
the artillery arms group that supports the infantry. A rocket
launcer is characterized by high fire power and ma-
noeuevrability due to its possibility to move with other
rockets set on the launch ramp.

The basic requirement for safe-handling a weapon like a
rocket launcher demands both the stability of the observed
object in respect to the overturning and stability of its vital
elements and subassemblies, to which the rocket ramp be-
longs. The calculatons of the rocket launcher stability are
not standardized in our country and there is a small number
of papers analysing these problems. The stability of the
rocket launcher in regard to the overturning has been con-
sidered on a mechanical model with five-degrees-of- free-
dom of motion in papers [1, 2, 3, 4]. The recommended
model is based on the analogous model for the stability
analysis of the track crane considered in papers [5, 6,7, 8, 9,
10, 11, 12]. The main advantage of the suggested method,
compared with the existing stability calculations methods,
lies in the fact that it takes into account the dynamics ef-
fects of the whole object as well as the elasticity of both the
support i. e. the ground and the launch ramp.

Mechanical model

The mechanical model of the rocket launcher during
launching the rocket (Fig.1), which is suggested here, con-
sists of rigid bodies and deformable elements with elastic
connectons. The bottom construction of the rocket launcher
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is composed of a truck frame (chassis), driver's cab, driving
aggregates of weight G (pos. 1) and supports that may be
stabilizers of weight G¢ (pos. 2) or pneumatics (pos.3). The
chassis with the aggregates and the elements on it is con-
sidered a rigid beam supported by appropriate springs. Such
an appromaxion is allowable, especially by constructively
strenthened chassis. The spring rigidity corresponds the ri-
gidity of the ground. Since the rigidity of the stabilizer is
much greater than the rigidity of the ground, it is alowed to
approximate the stabilizer by rigid bodies. The top costruc-
tion of the launcher, which contains a radially axial bearing,
mechanisms for elevating and revolving of the ramp of
weight G, (pos. 4) and a carriage of weight G; (pos. 5), are
considered rigid bodies supported by the chassis. The
launch ramp of specific gravity ¢, (pos. 6) represents a can-
tilever beam (consol) (the shorter (lower) part of the ramp
is neglected), which is elastic and deformable in the vertical
plane. The rocket weight Gs (pos. 7) represents a rigid
body. Generally speaking, the considered system has infi-
nite degrees of freedom of motion. However, taking into
account the aim of the investigation and the introduced
simplifications, this system may be substituted by model
with four-degree-of-freedom of motion (Fig.2). The motion
of such a system is defined by the following generalized
coordinates:

&, -the vertical moving (the moving in the direction of the
z-axis) of the center of mass of the bottom construc-
tion (point C)

£, -the rotation around the main transversal central axis of
inertia of the bottom construction

£, -the moving of the rocket along the launch ramp

&3 -the deflection of the launch ramp peak in the vertical
plane in the direction of the undeformed ramp
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Figure 1. Scheme of rocket launcher

Figure 2. Mechanical model of rocket launcher

Differential equations of motion of a mechanical
system

To derive the differential equations, we use Lagrange's
equations of the second kind
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where E}, E, and Q; are the kinetic energy, potencial energy
and corresponding generalized nonconservative forces, re-
spectively.

The equaton of the elastic line of the launch ramp is un-
known. In the papers dealing with the problems of the dy-
namic stability of the truck crane boom, different functions
of the elastic lines, such as trigonometrical functions and
polinomials, were suggested. In this paper the elastic line of
the launch ramp has a polinomial form and satisfies all
boundary conditions
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where [y and /;yare the corresponding lenghts (Fig.2).
The kinetic energy of the mechanical system has the fol-
lowing form

E,=Eg+tEo+Es+EL+Es+Eg 3)

n(A)=

where Ey. E, Eis, Ew, Ers and Eig are the kinetic energies
of the bottom construction, of the stabilizer, of the top con-
struction, of the carriage, of the boom and of the rocket re-
spectively.

The final expression for the kinetic energy has the fol-
lowing form
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where
Re,R.,R.,Rs,R,, R, - arethe velocities of the characteristic
points of the system
- is the density of the launch ramp

matherial

A, - the average area of the launch ramp
cross section

J, - the corresponding moment of inertia

of the launch ramp
The potential energy of the mechanical system has the
form

E,=E, +E,+E ;+E, +E,+E,+E,;+EL; 5

where:

E, -is the potential energy due to the ground deforma-
tion

E,, -is the potential energy of the bottom construction

E,; -is the potential energy due to deformation of the
connection between the chassis and stabilizer

E,, -is the potential energy of the stabilizer

E,s -is the potential energy of the top construction

E,; -is the potential energy of the carriage

E,; -is the potential energy of the boom

E,s -is the potential energy of the rocket

The potential energy of the ground is defined by the ex-
pression

Epl:O’S.c.[(§0+l3~§1)2+(§0_l4'6€1)2:| (6)

where c - is the ground rigidity.
The potential energy of the bottom construction has the
form

En=G(ls+&) (7N

Analysis of the real construction shows that the girder
AD is welded to the girder which is farther connected to the
hydrocylinder. The connection of the girder can be mod-
elled as a jamming. Since the girder AD is treated here as
absolutely rigid, independent moving of supports A and D
would cause deviations with respect to the right angle (an-
gles ZDAV and ZADJ-Fig.2). That contradicts the bound-
ary condition for an absolutely rigid jamming with formula-
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tion as follows: the inclination of the elastic line is equal to
zero. Since this connection is not absolutely rigid, but elas-
tic, we shall introduce the support rigidity coefficient of the
chassis grider (cq). Thus, the deformations of two supports,
connected by a grider, are conected. We can define the cor-
responding potential energy

E,;;=0,57¢ & ®)
The potential energy of the stabilizer has the form
Ep4:G6'[2'(16 +§0)+(13_l4)'§1] )

The potential energy of the top construction is defined
by the following expression

E;s =G, -(lg+&+15L-&+1)) (10)
whereas the potential energy of the carriage is
E=Gy-(lg+k+&+1L-&) (11)
The potential energy of the boom has the form

E,,=Eq; +E, 1, +E,; (12)

where

E,;:1 -the potential energy caused by the bending

E,;» -the potential energy of the launch ramp caused by
the axial force

E,3 -the potential energy of the launch ramp caused by
the transversal force

The potential energy caused by bending is defined by the
following expression
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where
E - the ramp elasticity modulus
1,, -the average moment of inertia of the launch ramp
The potential energy of the launch ramp caused by the
axial force has the form

L= [ND(on
Ena=] =50 [ jdﬂ (14)

The axial force is a function of the coordinate of length
A, of the geometric characteristics of the launch ramp and
of the rocket position with respect to the launch ramp

N(A) za & <A<l
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where
N(A)=q4 'Sin(a—fl)'(llo —/1)
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The potential energy of the launch ramp caused by the
action of the transversal force is of the form
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(16)

The transversal force is defined by the following expres-
sions
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The potential energy of the rocket is
Epg :GS.ZS (20)

where the rocket position i.e. the z coordinate of the point S
is denoted by z, .

Since the direction of the rocket motion coincidies with
the length axis of the launch ramp, the torsion of the launch
ramp is neglected.

Generalized nonconservative forces are defined by the
following expressions

OR;
¢,

OR; ,
+(Fp,z _Eu,:)' ag, (21)

Qin = (Fp,x - EL[,X ) :

where

- F, —the rocket thrust

- F,— the friction force between the rocket and launch
lamp

The final form of Lagrange's equations, being extremely
extensive is not given in this paper.

At the initial time moment the generalized coordinates,
defining the deformations (&, & 1, & 3), will take the values
equal to their static deformations. At the initial time mo-
ment the rocket was at rest at the base of the system of co-
ordinates HnA, meaning that &, (0) = 0. Since for #,= 0 the
whole system was at rest, then the first derivatives of the
generalized coordinates with respect to the time will equal
Zero.

Criteria of stability

The considered system will be stable if the stability con-
ditions of both the rocket launcher as an object and launch
ramp as its most endangered constituent subassembly are
fulfilled.

The rocket launcher, considered as an object, will be
stable if the deflections of the ground under supports 4 (Ay)
and D (Ap) are greater than or equal zero. If one of the de-
flections is less than zero, then the system can be conside-

red unstable [16].
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During exploitation, when launching the rocket depend-
ing on geometric characteristics of the launch ramp and
thrust value, the rocket can sometimes drive the ramp up.
This can cause its deformation to an extent greater than al-
lowed, that influences the firing precision. We conclude
that the launch ramp, in the practical sense, is stable if the
deflection value of the ramp top, its maximum deformation,
doesn't exceed allowable values. From the theoretic point of
view, the launch ramp loses the stability if the maximum
value of its deflection i.e. the deflection on its peak, tends
to infinity [15].

A numerical example and the analysis of the
results

On the basis of the established mechanical-mathematical
model, using the program package MathCAD 2001, it is
possible to analyse dynamic behaviour of the rocket
launcher in real exploitation conditions. Some of the ob-
tained results for the launch rocket system inquestion will
be shown later in this paper.
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Figure 3. The thrust for the case of driving by three (3M) and four engines
(4M)

The thrust change, as a time function, is defined by
measuring in real exploitation conditions in case of three
driving as well as four driving engines (Fig.3). Using the
results of the measurings and applying the program package
TableCurve2D, the conclusion is that they can be described
by the following functions:

- driving by three engines

F, =492,1433-1488373,5-1+957084,27 -1 —
—96447,413-£ +699233,73-¢"°

>

- driving by four engines

F, =656,19106-1984498,1-1+1276112,4-¢"° —
-128596,55-1* +932311,64-1"° '

The rocket drive is induced by three or four engines In
case of four engines drive, the time needed for the rocket to
leave the ramp win be about 15% shorter than in the case of
three engine drive (Fig.4). The rocket moving change
analysis can also be carried out using a more simplified
model with one-degree-of—freedom of motion. Fig.5 is pre-
sent the graph describing the error made using the analysis
of the rocket moving along the launch ramp (the during
generalized coordinate &) the model with one generalized
coordinate (&) with respect to the previously analyzed
model with four-degrees-of- freedom of motion. The shows
that the error increases with the time increasing i.e. with the
launch ramp length increasing. However, the error is less

than 0,5% and it can be neglected. The reason for such a
small deviation lies in the fact that the rigidity of the whole
system is large not to considerably affect the rocket motion
sufficiently.
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Figure 4. The graph of the moving change of the rocket along the launch
ramp as a time function
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Figure 5. Comparison of the error that occures while using different
models in the analysis of movining the rocket along the launch ramp
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Figure 6. Chainging of the ground deflection under the stabilizer as a time
function

Analysis of the graph of the ground deflection shows
that the rocket launcher is stable, since the ground deflec-
tion under each support is greater than zero (Fig.6). This
case of was checked for launching the rocket of mass 274
kg.. The ground deflections changes in case of three i.e.
four drive engine does not differ significantly. Thus, the ef-
fect of the number of rockets to the rocket launcher stability
is relatively small.

The launch ramp peak deflection at the initial time mo-
ment, when the system is at rest, equals the statistical value
of the deflection (Fig.7). If the rocket moves, i.e. if the gen-
eralized coordinate increases, the observed deflection de-
creases, and after 0,06 s it takes negative values. This
matches the real practical problems. One of the greatest
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problems during the exploitation of the rocket launcher is
the situation in which, depending on the construction pa-
rameters of the rocket launcher as well as on the rocket
drive, the rocket "pulls" the launch ramp in the direction of
the "z" coordinate (Fig.2). In the analysed example the de-
formations are within allowable bounds, i.e. this situation is
not expected.
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Figure7. Chainging of the launch ramp peak deflection as a time function

Comparing the deflection values of the launch ramp peak
at the moment when the rocket leaves the ramp, it can be
noticed that the deflection in the case of of three drive en-
gines is less than in the case of four drive engines (Fig.7).
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Figure 8. Chainging of the velocity of the launch ramp peak deflection as
a time function

The rocket velocity associated with the generalized co-
ordinate & at a given time moment in the case of three
drive engines is greater in respect to the case of four drive
engines (Fig.8). This fact is considered very important in
the analysis of the rocket range, since the rocket velocity
associated with the generalized coordinate & "pulls" the
rocket to the ground, causing the rocket range to decrease.
Based on this, it can be concluded that the range of the
rocket can be increased if the rocket velocity, the velocity
associated with the generalized coordinate & at the moment
of leaving the ramp is less than or equal zero. That can be
done by changing the length of the launch ramp. For exam-
ple, if the ramp length increases, the negative value of the
generalized coordinate & (Fig.9) increases, but, on the
other side, the ramp peak deflection increases (Fig.10) and
also the value of the deflection under the critical stabilizer
"A" decreases (Fig.11). If the increment of the ramp lenght
is large, e.g. L;;=10 m, then the ramp peak deflection will
exceed allowable values. For this reason, engineers have to
compare characteristic deformations (44, &) with their al-
lowable values, realizing by that the maximum rocket
range. However, solving this problem can be the subject of
yet another research.
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Figure 9. Chainging of the velocity of the launch ramp peak deflection as
a time function, for different ramp length (curve I — /,4=3,5 m; curve II —
110=5 m; curve III — [,i=6,3 m; curve IV — /=8 m; curve V — /;,=10 m;)
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Figure 10. Chainging of the launch ramp peak deflection as a time
function for different ramp length (curve I — /,,=3,5 m; curve II — /,p=5 m;
curve III — /;p=6,3 m; curve IV — [;,,=8 m; curve V — /=10 m;)
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Figure 11. Chainging of the ground deflection under the stabilizer "A" as a
time function for different ramp lenghts
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Figure 12. Graph of the changing of the rocket moving along the launch
ramp as a time function for different values of the rocket mass (curve I —
ms=274 kg; curve Il — ms=450 kg; curve III — ms=600 kg)

The rocket, launched from the rocket launcher which is
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the subject of this analysis comes, is three different masses:
274 kg, 450 kg 1 600 kg. The graph shows that the incre-
ment of the rocket mass causes the increase of time neces-
sary for the rocket to leave the launch ramp. For example it
takes a rocket of 450 kg mass 27% more time in compared
to the rocket of 274 kg, whereas in the case of a rocket of
600 kg mass, that increment is 47%. The effect of the
rocket mass to the ground deformation under the support
(fig.13) and to the launch ramp peak deflection (fig.14) is
negligible, the rocket spending a considerable period of
time in contact with the ramp.
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Figure 13. Change of the ground deformation under the support “A” as a
time function for different of the rocket (curve I — ms=274 kg; curve II —
ms=450 kg; curve III — ms=600 kg)
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Figure 14. Change of the launch ramp peak deflection as a time function
for different masses of the rocket (curve I — ms=274 kg; curve Il — ms=450
kg; curve III — ms=600 kg)

The effect of the coefficient of friction between the
rocket and launch ramp, on the dynamic behaviour of the
examined system is negligibly small.
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Figure 15. Change of the ground deformation under the support "A" as a
time function for different angles «

In the previous examples the analysis has been made for
the case when the angle between the launch ramp and hori-

zontal ground surface equals =45°. Additional analysis

has established the effect of the angle « on the rocket
moving along the launch ramp is negligible. However, if
the observed angle is decreased, the ground deflection un-
der the support A (Fig.15) also decreases but the deflection
of the launch ramp peak increases (Fig.16). It can be con-
cluded that the decrease of the angle between the launch
ramp and horizontal surface makes it more probable that
some of the criteria of stability given above will not be sat-
isfied.
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Figure 16. Change of the launch ramp peak deflection as a time function
for different angles «

Conclusion

Numerical example, in which actual rocket launcher pa-
rameters have been used established how certain parameters
effect the dynamic stability of the rocket launcher as an ob-
ject as well as the launch ramp as its constituent subassem-
bly. The resulting conclusions can be useful for designers in
the process of designing new and reconstructing the already
existing rocket systems. With slight modification model,
can be applied in other similar constructions.
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Analiza parametara uticajnih na dinamicku stabilnost raketnog lansera

U radu se razmatraju razliiti parametri (sila potiska, masa rakete, duZina lansirne rampe i dr.) koji imaju najveéi uticaj na di-
nami¢ku stabilnost raketnog lansera. U cilju egzaktnog i relativno jednostavnog reSenja problema, postavljen je mehani¢ki mo-
del sa krutim i deformabilnim elementima. Analizirana je dinamicka stabilnost raketnog lansera i lansirne rampe kao njenog
sastavnog, vitalnog sklopa. Dobijeni analiti¢ki izrazi su verifikovani numeri¢kim primerom za realni objekat. Rezultati mogu
da budu i od znacaja projektantima u procesu projektovanja novih i rekonstrukciji ve¢ postojeéih raketnih sistema kao i tehni-
¢koj sluzbi koja propisuje uputstva za rukovanje sa ovim artiljeriskim orudjem.

Kljucne reci: dinamicka stabilnost, raketni lanser, deformacija, sila potiska, masa rakete.

AHanus nmapamMeTpoOB BIUSIONYX HA TUHAMUYECKYIO YCTOMUYUBOCTD
PaKETHOM IIyCKOBOM YCTAHOBKH

B sT0it paGoTe paccMaTpHBAaHEI pa3NWYHEIE TapaMeTphl ( CHIIa peaKTUBHOM TSTH, Macca pakeThl, JIWHA MYCKOBOH HAKIOH-
HOM IJIOCKOCTH H.T.I.), KOTOPBIE OKa3bIBAalOT HaMOOJbIlee BIMSHAE Ha JHHAMEYECKYIO YCTOHUMBOCTH PaKETHOHM MyCKOBOH
ycraHOBKH. C I[ebIo TOYHOTO H OTHOCHTENBLHO IPOCTOro pemieHrs MpobIeM, yCTaHOBIIEHa MEXaHIIeCKas MOAEINb CO XKeCT-
KAMA ¥ ie(pOpMEPOBaHHBIME 3JIeMeHTaMH. ToXe cAeslaH aHaIi3 JHHAMIYECKOM YCTOMYMBOCTH PaKETHOM ITyCKOBOH yCTaHO-
BKHM H OYCKOBOM HaKJIIOHHOM IUIOCKOCTH KaK €€ COCTaBHOTO M BaXXHOTO y3na. ITonmydyeHHBIe aHANUTHYECKHE BBIpasKCHUS
BepH(pUKOBaHbI E(POBHIM IPUMEPOM JIS PEaJIbHOTO 00'beKTa. Pe3ybTaThl MOTYT OBITh 3HAYUTENHHBI [JISI HHKEHEPOB B
mponecce KOHCTPYKIMU HOBBIX M PEKOHCTPYKIMH yXe CYIIESCTYIOIUX paKeTHLIX CHCTEM, a B TOM 9JHCNE M TEXHHYECKOR
ciryx6e, KOTOpasi MPEINACHIBACT U YCTaHABIMBAET ITPAaBAJIa ¥ MHCTPYKIMHA JIsi OOCITy>KMBaHUs M YIIPaBJICHAS 9TUM apTHILIE-

PHUIACKHM OpyKAEM.

Karuesvle caosa: gAHaAMAYECKAs YCTOMUABOCTD, paKeTHas IyCKOBasA yCTaHOBKa, fehopMalys, Ciiia peakTABHO#M TSTH, Macca

PakeThl.





