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This paper considers several different parameters of a rocket launcher (thrust level, rocket mass, launch ramp length, 
and others) which have the greatest effect on its dynamic stability. A relatively simple mechanical model, with both 
rigid and deformable elements, is formed for the purpose of stability analyses. The dynamic stability of the rocket 
launcher, as well as the launch ramp as its component subassembly, has been examined. The resulting analytical ex-
pressions have been verified by a numerical example for a real object. The actual results can be useful to engineers in 
the process of designing new or reconstructing the existing rocket systems, as well as to the technical support service 
responsible for issuing regulations regarding the handling this type of artillery armament. 
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Introduction 
 rocket launcher belongs to the group of the artillery 
weapons intended for destruction of the enemy per-

sonnel as well as for destruction of certain points deep in 
the enemy rear. Therefore, military theorists classify it in 
the artillery arms group that supports the infantry. A rocket 
launcer is characterized by high fire power and ma-
noeuevrability due to its possibility to move with other 
rockets set on the launch ramp.  

The basic requirement for safe-handling a weapon like a 
rocket launcher demands both the stability of the observed 
object in respect to the overturning and stability of its vital 
elements and subassemblies, to which the rocket ramp be-
longs. The calculatons of the rocket launcher stability are 
not standardized in our country and there is a small number 
of papers analysing these problems. The stability of the 
rocket launcher in regard to the overturning has been con-
sidered on a mechanical model with five-degrees-of- free-
dom of motion in papers [1, 2, 3, 4]. The recommended 
model is based on the analogous model for the stability 
analysis of the track crane considered in papers [5, 6,7, 8, 9, 
10, 11, 12]. The main advantage of the suggested method, 
compared with the existing stability calculations methods, 
lies in the fact that it takes into account the dynamics ef-
fects of the whole object as well as the elasticity of both the 
support i. e. the ground and the launch ramp. 

Mechanical model 
The mechanical model of the rocket launcher during 

launching the rocket (Fig.1), which is suggested here, con-
sists of rigid bodies and deformable elements with elastic 
connectons. The bottom construction of the rocket launcher 

is composed of a truck frame (chassis), driver's cab, driving 
aggregates of weight G1 (pos. 1) and supports that may be 
stabilizers of weight G6 (pos. 2) or pneumatics (pos.3). The 
chassis with the aggregates and the elements on it is con-
sidered a rigid beam supported by appropriate springs. Such 
an appromaxion is allowable, especially by constructively 
strenthened chassis. The spring rigidity corresponds the ri-
gidity of the ground. Since the rigidity of the stabilizer is 
much greater than the rigidity of the ground, it is alowed to 
approximate the stabilizer by rigid bodies. The top costruc-
tion of the launcher, which contains a radially axial bearing, 
mechanisms for elevating and revolving of the ramp of 
weight G2 (pos. 4) and a carriage of weight G3 (pos. 5), are 
considered rigid bodies supported by the chassis. The 
launch ramp of specific gravity q4 (pos. 6) represents a can-
tilever beam (consol) (the shorter (lower) part of the ramp 
is neglected), which is elastic and deformable in the vertical 
plane. The rocket weight G5 (pos. 7) represents a rigid 
body. Generally speaking, the considered system has infi-
nite degrees of freedom of motion. However, taking into 
account the aim of the investigation and the introduced 
simplifications, this system may be substituted by model 
with four-degree-of-freedom of motion (Fig.2). The motion 
of such a system is defined by the following generalized 
coordinates: 
ξ 0 - the vertical moving (the moving in the direction of the 

z-axis) of the center of mass of the bottom construc-
tion (point C) 

ξ 1 - the rotation around the main transversal central axis of
inertia of the bottom construction 

ξ 2 - the moving of the rocket along the launch ramp 
ξ 3 - the deflection of the launch ramp peak in the vertical 

plane in the direction of the undeformed ramp 

A 
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Figure 1. Scheme of rocket launcher 

 

Figure 2. Mechanical model of rocket launcher 

Differential equations of motion of a mechanical 
system 

To derive the differential equations, we use Lagrange's 
equations of the second kind 
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where Ek, Ep and Qi are the kinetic energy, potencial energy 
and corresponding generalized nonconservative forces, re-
spectively. 

The equaton of the elastic line of the launch ramp is un-
known. In the papers dealing with the problems of the dy-
namic stability of the truck crane boom, different functions 
of the elastic lines, such as trigonometrical functions and 
polinomials, were suggested. In this paper the elastic line of 
the launch ramp has a polinomial form and satisfies all 
boundary conditions 
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where l9  and l10 are the corresponding lenghts (Fig.2). 
The kinetic energy of the mechanical system has the fol-

lowing form 

1 2 3 4 5 6k k k k k k kE E E E E E E= + + + + +  (3)

where Ek1, Ek2, Ek3, Ek4, Ek5 and Ek6 are the kinetic energies 
of the bottom construction, of the stabilizer, of the top con-
struction, of the carriage, of the boom and of the rocket re-
spectively. 

The final expression for the kinetic energy has the fol-
lowing form 
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where 
, , , , ,C E L S A DR R R R R R& & & & & & - are the velocities of the characteristic 

points of the system 
ρ - is the density of the launch ramp 

matherial 
Ar - the average area of the launch ramp 

cross section 
Jr - the corresponding moment of inertia 

of the launch ramp 
The potential energy of the mechanical system has the 

form 
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where: 
Ep1 - is the potential energy due to the ground deforma-

tion 
Ep2 - is the potential energy of the bottom construction 
Ep3 - is the potential energy due to deformation of the 

connection between the chassis and stabilizer 
Ep4 - is the potential energy of the stabilizer 
Ep5 - is the potential energy of the top construction 
Ep6 - is the potential energy of the carriage 
Ep7 - is the potential energy of the boom 
Ep8 - is the potential energy of the rocket 

The potential energy of the ground is defined by the ex-
pression 
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where c - is the ground rigidity. 
The potential energy of the bottom construction has the 

form 

( )2 1 6 0pE G l ξ= ⋅ +  (7)

Analysis of the real construction shows that the girder 
AD is welded to the girder which is farther connected to the 
hydrocylinder. The connection of the girder can be mod-
elled as a jamming. Since the girder AD is treated here as 
absolutely rigid, independent moving of supports A and D 
would cause deviations with respect to the right angle (an-
gles ∠DAV and ∠ADJ-Fig.2). That contradicts the bound-
ary condition for an absolutely rigid jamming with formula-
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tion as follows: the inclination of the elastic line is equal to 
zero. Since this connection is not absolutely rigid, but elas-
tic, we shall introduce the support rigidity coefficient of the 
chassis grider (cs). Thus, the deformations of two supports, 
connected by a grider, are conected. We can define the cor-
responding potential energy 

2 2
3 5 10, 5p sE c l ξ= ⋅ ⋅ ⋅  (8)

The potential energy of the stabilizer has the form 
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The potential energy of the top construction is defined 
by the following expression 

( )5 2 6 0 2 1 11pE G l l lξ ξ= ⋅ + + ⋅ +  (10)

whereas the potential energy of the carriage is 
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The potential energy of the boom has the form 
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where 
Ep7,1  - the potential energy caused by the bending 
Ep7,2  - the potential energy of the launch ramp caused by

the axial force 
Ep7,3  - the potential energy of the launch ramp caused by

the transversal force 
The potential energy caused by bending is defined by the 

following expression 
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where 
E - the ramp elasticity modulus  
Iy,r - the average moment of inertia of the launch ramp  

The potential energy of the launch ramp caused by the 
axial force has the form 
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The axial force is a function of the coordinate of length 
λ, of the geometric characteristics of the launch ramp and 
of the rocket position with respect to the launch ramp 
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The potential energy of the launch ramp caused by the 
action of the transversal force is of the form 
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The transversal force is defined by the following expres-
sions 
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The potential energy of the rocket is 

8 5p SE G z= ⋅  (20)

where the rocket position i.e. the z coordinate of the point S 
is denoted by sz . 

Since the direction of the rocket motion coincidies with 
the length axis of the launch ramp, the torsion of the launch 
ramp is neglected.  

Generalized nonconservative forces are defined by the 
following expressions 
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where 
– Fp – the rocket thrust 
– Fµ – the friction force between the rocket and launch 

lamp 
The final form of Lagrange's equations, being extremely 

extensive is not given in this paper. 
At the initial time moment the generalized coordinates, 

defining the deformations (ξ 0, ξ 1, ξ 3), will take the values 
equal to their static deformations. At the initial time mo-
ment the rocket was at rest at the base of the system of co-
ordinates Hηλ, meaning that ξ 2 (0) = 0. Since for t0 = 0 the 
whole system was at rest, then the first derivatives of the 
generalized coordinates with respect to the time will equal 
zero. 

Criteria of stability 
The considered system will be stable if the stability con-

ditions of both the rocket launcher as an object and launch 
ramp as its most endangered constituent subassembly are 
fulfilled. 

The rocket launcher, considered as an object, will be 
stable if the deflections of the ground under supports A (∆A) 
and D (∆D) are greater than or equal zero. If one of the de-
flections is less than zero, then the system can be conside-
red unstable [ ]16 . 
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During exploitation, when launching the rocket depend-
ing on geometric characteristics of the launch ramp and 
thrust value, the rocket can sometimes drive the ramp up. 
This can cause its deformation to an extent greater than al-
lowed, that influences the firing precision. We conclude 
that the launch ramp, in the practical sense, is stable if the 
deflection value of the ramp top, its maximum deformation, 
doesn't exceed allowable values. From the theoretic point of 
view, the launch ramp loses the stability if the maximum 
value of its deflection i.e. the deflection on its peak, tends 
to infinity [15]. 

A numerical example and the analysis of the 
results 

On the basis of the established mechanical-mathematical 
model, using the program package MathCAD 2001, it is 
possible to analyse dynamic behaviour of the rocket 
launcher in real exploitation conditions. Some of the ob-
tained results for the launch rocket system inquestion will 
be shown later in this paper.  

 

Figure 3. The thrust for the case of driving by three (3M) and four engines 
(4M) 

The thrust change, as a time function, is defined by 
measuring in real exploitation conditions in case of three 
driving as well as four driving engines (Fig.3). Using the 
results of the measurings and applying the program package 
TableCurve2D, the conclusion is that they can be described 
by the following functions: 
– driving by three engines 
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The rocket drive is induced by three or four engines In 
case of four engines drive, the time needed for the rocket to 
leave the ramp win be about 15% shorter than in the case of 
three engine drive (Fig.4). The rocket moving change 
analysis can also be carried out using a more simplified 
model with one-degree-of–freedom of motion. Fig.5 is pre-
sent the graph describing the error made using the analysis 
of the rocket moving along the launch ramp (the during 
generalized coordinate ξ2) the model with one generalized 
coordinate (ξ2) with respect to the previously analyzed 
model with four-degrees-of- freedom of motion. The shows 
that the error increases with the time increasing i.e. with the 
launch ramp length increasing. However, the error is less 

than 0,5% and it can be neglected. The reason for such a 
small deviation lies in the fact that the rigidity of the whole 
system is large not to considerably affect the rocket motion 
sufficiently. 

 

Figure 4. The graph of the moving change of the rocket along the launch 
ramp as a time function 

 

Figure 5. Comparison of the error that occures while using different 
models in the analysis of movining the rocket along the launch ramp 

 

Figure 6. Chainging of the ground deflection under the stabilizer as a time 
function  

Analysis of the graph of the ground deflection shows 
that the rocket launcher is stable, since the ground deflec-
tion under each support is greater than zero (Fig.6). This 
case of was checked for launching the rocket of mass 274 
kg.. The ground deflections changes in case of three i.e. 
four drive engine does not differ significantly. Thus, the ef-
fect of the number of rockets to the rocket launcher stability 
is relatively small. 

The launch ramp peak deflection at the initial time mo-
ment, when the system is at rest, equals the statistical value 
of the deflection (Fig.7). If the rocket moves, i.e. if the gen-
eralized coordinate increases, the observed deflection de-
creases, and after 0,06 s it takes negative values. This 
matches the real practical problems. One of the greatest 
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problems during the exploitation of the rocket launcher is 
the situation in which, depending on the construction pa-
rameters of the rocket launcher as well as on the rocket 
drive, the rocket "pulls" the launch ramp in the direction of 
the "z" coordinate (Fig.2). In the analysed example the de-
formations are within allowable bounds, i.e. this situation is 
not expected. 

 

Figure7. Chainging of the launch ramp peak deflection as a time function 

Comparing the deflection values of the launch ramp peak 
at the moment when the rocket leaves the ramp, it can be 
noticed that the deflection in the case of of three drive en-
gines is less than in the case of four drive engines (Fig.7).  

 

Figure 8. Chainging of the velocity of the launch ramp peak deflection as 
a time function  

The rocket velocity associated with the generalized co-
ordinate ξ3 at a given time moment in the case of three 
drive engines is greater in respect to the case of four drive 
engines (Fig.8). This fact is considered very important in 
the analysis of the rocket range, since the rocket velocity 
associated with the generalized coordinate ξ3 "pulls" the 
rocket to the ground, causing the rocket range to decrease. 
Based on this, it can be concluded that the range of the 
rocket can be increased if the rocket velocity, the velocity 
associated with the generalized coordinate ξ3 at the moment 
of leaving the ramp is less than or equal zero. That can be 
done by changing the length of the launch ramp. For exam-
ple, if the ramp length increases, the negative value of the 
generalized coordinate ξ3 (Fig.9) increases, but, on the 
other side, the ramp peak deflection increases (Fig.10) and 
also the value of the deflection under the critical stabilizer 
"A" decreases (Fig.11). If the increment of the ramp lenght 
is large, e.g. L10=10 m, then the ramp peak deflection will 
exceed allowable values. For this reason, engineers have to 
compare characteristic deformations (∆A, ξ3) with their al-
lowable values, realizing by that the maximum rocket 
range. However, solving this problem can be the subject of 
yet another research. 

 

Figure 9. Chainging of the velocity of the launch ramp peak deflection as 
a time function, for different ramp length (curve I – l10=3,5 m; curve II – 
l10=5 m; curve III – l10=6,3 m; curve IV – l10=8 m; curve V – l10=10 m;) 

 

Figure 10. Chainging of the launch ramp peak deflection as a time 
function for different ramp length (curve I – l10=3,5 m; curve II – l10=5 m; 
curve III – l10=6,3 m; curve IV – l10=8 m; curve V – l10=10 m;) 

 

Figure 11. Chainging of the ground deflection under the stabilizer "A" as a 
time function for different ramp lenghts 

\ 

Figure 12. Graph of the changing of the rocket moving along the launch 
ramp as a time function for different values of the rocket mass (curve I – 
m5=274 kg; curve II – m5=450 kg; curve III – m5=600 kg) 

The rocket, launched from the rocket launcher which is 
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the subject of this analysis comes, is three different masses: 
274 kg, 450 kg i 600 kg. The graph shows that the incre-
ment of the rocket mass causes the increase of time neces-
sary for the rocket to leave the launch ramp. For example it 
takes a rocket of 450 kg mass 27% more time in compared 
to the rocket of 274 kg, whereas in the case of a rocket of 
600 kg mass, that increment is 47%. The effect of the 
rocket mass to the ground deformation under the support 
(fig.13) and to the launch ramp peak deflection (fig.14) is 
negligible, the rocket spending a considerable period of 
time in contact with the ramp. 

 

Figure 13. Change of the ground deformation under the support “A” as a 
time function for different of the rocket (curve I – m5=274 kg; curve II – 
m5=450 kg; curve III – m5=600 kg) 

 

Figure 14. Change of the launch ramp peak deflection as a time function 
for different masses of the rocket (curve I – m5=274 kg; curve II – m5=450 
kg; curve  III – m5=600 kg) 

The effect of the coefficient of friction between the 
rocket and launch ramp, on the dynamic behaviour of the 
examined system is negligibly small. 

 

Figure 15. Change of the ground deformation under the support "A" as a 
time function for different angles α  

In the previous examples the analysis has been made for 
the case when the angle between the launch ramp and hori-
zontal ground surface equals α=45O. Additional analysis 

has established the effect of the angle α  on the rocket 
moving along the launch ramp is negligible. However, if 
the observed angle is decreased, the ground deflection un-
der the support A (Fig.15) also decreases but the deflection 
of the launch ramp peak increases (Fig.16). It can be con-
cluded that the decrease of the angle between the launch 
ramp and horizontal surface makes it more probable that 
some of the criteria of stability given above will not be sat-
isfied. 

 

Figure 16. Change of the launch ramp peak deflection as a time function 
for different angles α  

Conclusion 
Numerical example, in which actual rocket launcher pa-

rameters have been used established how certain parameters 
effect the dynamic stability of the rocket launcher as an ob-
ject as well as the launch ramp as its constituent subassem-
bly. The resulting conclusions can be useful for designers in 
the process of designing new and reconstructing the already 
existing rocket systems. With slight modification model, 
can be applied in other similar constructions. 
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Analiza parametara uticajnih na dinamičku stabilnost raketnog lansera 
U radu se razmatraju različiti parametri (sila potiska, masa rakete, dužina lansirne rampe i dr.) koji imaju najveći uticaj na di-
namičku stabilnost raketnog lansera. U cilju egzaktnog i relativno jednostavnog rešenja problema, postavljen je mehanički mo-
del sa krutim i deformabilnim elementima. Analizirana je dinamička stabilnost raketnog lansera i lansirne rampe kao njenog 
sastavnog, vitalnog sklopa. Dobijeni analitički izrazi su verifikovani numeričkim primerom za realni objekat. Rezultati mogu 
da budu i od značaja projektantima u procesu projektovanja novih i rekonstrukciji već postojećih raketnih sistema kao i tehni-
čkoj službi koja propisuje uputstva za rukovanje sa ovim artiljeriskim orudjem. 

Ključne reči: dinamička stabilnost, raketni lanser, deformacija, sila potiska, masa rakete. 

Analiz parametrov vli}y|ih na dinami~eskuy ustoj~ivostx 
raketnoj puskovoj ustanovki 

V &toj rabote rassmatrivanw razli~nwe parametrw  ( sila reaktivnoj t}gi, massa raketw,  dlina puskovoj naklon-
noj ploskosti i.t.d.), kotorwe okazwvayt naibolx{ee vli}nie na dinami~eskuy ustoj~ivostx raketnoj puskovoj 
ustanovki. S celxy to~nogo i otnositelxno prostogo re{eni} problem, ustanovlena mehani~eska} modelx so `est-
kimi i deformirovannwmi &lementami. To`e sdelan analiz dinami~eskoj  ustoj~ivosti raketnoj puskovoj ustano-
vki i puskovoj  naklonnoj ploskosti kak ee sostavnogo i va`nogo uzla. Polu~ennwe analiti~eskie vwra`eni} 
verifikovanw cifrovwm primerom dl} realxnogo obqekta. Rezulxtatw mogut bwtx zna~itelxnw dl} in`enerov v 
processe konstrukcii novwh i rekonstrukcii u`e su|estuy|ih raketnwh sistem, a v tom ~isle i tehni~eskoj 
slu`be, kotora} predpiswvaet i ustanavlivaet pravila i instrukcii dl} obslu`ivani} i upravleni} &tim artille-
rijskim oru`iem. 

Kly~evwe slova: dinami~eska} ustoj~ivostx, raketna} puskova} ustanovka, deformaci}, sila reaktivnoj t}gi, massa 
raketw.  

 




