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descriptive systems

Dragutin Lj. Debeljkovi¢, PhD (Eng)"
Mica B. Jovanovi¢, PhD (Eng)z)
Ljubomir A. Jaci¢, PhD (Eng)®

The transfer matrix function has a particular significance in dynamical analysis of real linear singular multivariable
feedback control systems from the stand point of input — output realations, under the zero conditions. Natural connec-
tion with fequency domain is obvious, necesary and therefore present in numerous methodes and approaches. Sev-
eral algorithms which allow the computation of transfer function matrix of linear regular singular systems from the
state space description without inverting a polynomial matrix are presented. An allternative closed-form expression

for transfer function matrix in terms of matrix pencil (sE - A) is also given. Some of the approaches presented are di-

rect extenssions of Leverrier's algorithm and some are its modifications.

A several numerical examples have been worked out to illustrate the methods presented.

Fundamental matrix has a particular significance in dynamical analysis of real linear discrete descriptive multivariable
feedback control systems. This paper shows that the forward and backward fundamental matrix sequence of regular
discrete descriptor system can be efficently used for computational purposes for finding its state space transient re-
sponse. Moreover, for such methods there is no need to use Drazin or some other pseudo inversion procedures and

Laurent series expanssion is enough for these purposes.
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— complex variable
(s) = transfer matrix function of singular system
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x(¢) - state vector

X; (t) — output vector
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complex variable
S(k) - Dirack function
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H — complex variable

v — index of nilpotency

P — index of nilpotency

1/ — fundemental matrix
14 — fundamentalna matrix
b4 — transition matrix

det — determinant

tr — trase of matrix

Introduction

INGULAR systems are those the dynamics of which are

governed by a mixture of algebraic and differential
equations. In that sense the algebraic equations represent
the constraints to the solution of the differential part.

These systems are also known as descriptor and semi-
state and arise naturally as a linear approximation of system
models, or linear system models in many applications such
as electrical networks, aircraft dynamics, neutral delay sys-
tems, chemical, thermal and diffusion processes, large-scale
systems, interconnected systems, economics, optimization
problems, feedback systems, robotics, biology, etc.

The complex nature of generalized state space systems
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causes many difficultes in analytical and numerical treat-
ment that do not appear when system are considered in their
normal form. In this sense questions of existence, solvabil-
ity, uniqueness, and smothness which must be solved in sat-
isfactory manner are present. A short and concise, accept-
able and understandable explanation of all these questions
may be found in the papers of Debeljkovic et. al (2004,
2005) and Lazarevic et al. (2001).

The survey of updated results for generalized state space
systems and a broad bibliography can be found in Bajic
(1992), Campbell (1980, 1982), Lewis (1986.a, 1987), De-
beljkovicet al. (1996.a, 1996.b, 1998, 2004, 2005) and in
the two special issues of the journal Circuits, Systems and
Signal Procesing (1986, 1989).

Consider linear singular system represented, by:

Ex(t) = Ax(t) , x(¢,) =X, )
y(1) = Cx(?) ’
and:
Ex(t) = Ax(t)+ Bu(t) , x(t)) =X, 2)
y(2) = Cx(1) ’

with the matrix E possibly singular, where x(¢) € R” is a
generalized state-space vector, u(¢) € R"™ is a control vari-
able, and y(¢) e R? . Matrices E, Ae R"™", Be R and

C e RP"are of the appropriate dimensions and are defined

by the field of real numbers '

The system given by eq.(1) is operatinig in a free and the
one given by eq.(2) is operating in a forced regime, i.e.
some external force is applied on it. It should be stressed
that, in general case, the initial conditions for an autonomus
and a system operating in the forced regime need not be the
same.

System models of this form have some important advan-
tages in comparison with models in the normal form, e.g.
when E = I and an appropriate discussion can be found in
Bajic (1992.a) and Debeljkovic et al. (1996, 1996a, 1998,
2004, 2005), Debeljkovic ( 2004).

Eq.(1.1 — 1.2) arise naturally in the process of modeling
various physical systems, when the equations are written in
the sparse form.

They have some important advantages in comparison
with the models in the normal form, Bajic (1992.a):

— the models preserve the sparsity of system matrices

— there is a tight relation between the system physical vari-
ables and the variables in these models,

— the structure of the physical system is well reflected in
the models,

— there is a great simplicity in derivation of the eq.(1.1 —
1.2) and in this connection there is no need to eliminate
the unwanted (redundant) variables, as it is not necessary
to build models in the traditional form.

Models of the mentioned forms, can be found in many
different fields.

The Laplace transform of system, given by (2), under the
zero conditions, results in the following generalized transfer
function matrix:

! Basic notations are given in Appendix A

adj(sE—A)B 3)

W(S):C(SE—A)_IB:Cm .

transfer matrix of singular system, with characteristic equa-
tion, of the form:

fil(s) = det (SE — A). (@)

It can be shown that the transfer function of linear singu-
lar systems, in certain circumstances, can not be found.

This problem is completely determined by question of
possible solvability of singular system, see Appendix B.

For (3), it is obvious, that only regular singular sys-
tems”, can have such description.

If singular system have no transfer function, i.e. it is ir-
regular, it may still have a general description pairing, Dzi-
urla, Newcomb (1987), that is a description of the form:

R()Y(s) = O()U(s), )

where Y(s) and U(s) are Laplace transforms of the output
and input, respectively. Since, irregular systems may have
many or no solutions at all, the question arises as to
whether we would meet them in the practice.

The mentioned reference shows that we indeed meet
them, at least when we idealize certain systems.

Other aspects, concerning solvability and state structure
for irregular singular systems can be found in Dai (1989.a).

A practical and compact procedure for obtaining transfer
function of linear singular systems, especially for high or-
der systems, is not based on eq.(3), but some specific pro-

. . . —~1
cedures based on a finite — series expansion for (sE—A) .

It is obvious that this procedure can only be applied to
the class of regular singular systems, so the right choice of
A € R, such as the regularity of conditions, (B.1), is satis-
fied.

Matrix function computation, based on eq.(3), can be
performed with a lot of difficulties since for this procedure
the inversion of proposed matrix is needed. The computa-
tion is then extremely complicated with possibilities of un-
stable converging procedures.

Having in mind such circumstances, usually some other
approaches are used in order to overcome the difficulties
mentioned above.

Some numerical methods for practical
computation of matrix transfer fuctions of linear
singular systems

Mehtod - Paraskevopoulos, Hristodoulou, Boglu
Consider the kinear singular system, given by (1-2).
To compute the inverse of matrix (sE—A) the follow-

ing technique will be used. Find a x so that matrix pencil
(ME + A) is regular. It should be noted that (uE+ 4) is
polynomial in p of degree at most n.

First, a u such that (uE+ A) is invertible, a number p
which is not the root of the polynomial det(uE + A4) must
be found. This problem is simple.

? See, eq. (B.1).



DEBELJKOVIC D.: TRANSFER FUNCTION MATRIX AND FUNDAMENTAL MATRIX OF LINEAR SINGULAR-DESCRIPTIVE SYSTEMS 79

The following steps are ysed:
(SE—A)" =(sE+ pE — uE— A)™
={(s+mE-(uE+ )} (6)
=+ mE~1)" (uE+ )"

where:

E=(uE+A)'E. (7)

The term (uE+A)™"' can easily be evaluated using a
computer, since for constant x, (uE+ A4)is given known

constant matrix of appropriate dinenssion.
Next the Sourian Frame-Faddev-algorithm will be used

o compute the term ((s + ,u)E - 1)_1 .
The following change of variable is introduced:
stu=w=1/z ®)
Then:

((s+mE~1)" =—z(zI-E)"

z BO + BIZ +...+B,,_lzn71

)

ay+az+..+a, z+z"

By + B, s(s+ 1) +...+ By(s+ p)""
I+a, (s+p)+...+ay(s+pn)"

where the terms B; and «;, i =0, 1, n — 1, are obtained
from Sourian Frame- Faddev-ovog algorihm:
ay1 = _IF(EBH—I) Bn—l = [n
ayo = _%tr(EABn—Z) Bn—2 = an—11+EBn—1
Bn—3 = an—2]+EBn—2 5 (10)
a = —itr(EBl)

ap = —%tr(EBO) By =al +EB,

By using formula (9) in (6) the general result follows:
Theorem 1. The inverse of matrix (sE—A4), where

det £ =0, is given by the following formula:

(SE-A)" =
(11)
B Ey+E(s+p)+..+E,_(s+p)""
1+ C(s+ )+ Coy(s+ )" +C, (s + p1)"
where:
Ei = _anlfi(/’lE_FA)_l > i= 192339’1_13
C=a,,,i=123,.,n, (12)

and B; and g; have been taken from (10).
u is any constant such that det (uE+ A4)#0.

Note that the formula (11) is independent of possible
choice of x .

Also, it is possible that some of terms B; and C; are
equal zero.

Thus matrix in (11) is not necessarily strictly proper™.

Numerical example 1. System under consideration is

given by:
11 1 2
S ERE
10 2 1
RS
o{d}={1.0}, o{E} ={1,0}
E—Ay" ={(s+ wE~1| (uE+4)",
- 1 2
#=-l E_{—l —2}
10 ~ ~
BIZ|:0 1:|, (ll:—tr(EBl)—tr(E):l,
A 2 2
BO:a1]+EBl:|:_1 _1:|
_ 1 1 202 2| _
O 1 R [t
E ==B, . (HE+A)", i=0,1
1 -1
E0:|:l Oj|, C1=a1=l,
4 -2
E1:|:_2 1:|,C2=a()=o.
o1 1 45-3 1-2s
(sE~4) _5[3—2s s—l}
B onlp_ 1[1 0453 1-2s5|[2 1
W(s)=C(sE~4) B_s[l 1}{3—2s s—J{o —1}
_1[8s—6 65s-4
5| 4s 3s |

Numerical example 2. System under consideration is

given by:
2 0 1 1 0 -1
A=10 1 0] E={00 O,
-2 -1 -1 00 1
1 01 120
B=1 11 C=(00 1|,
-120 1 2 -1

* See Appendix B
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o{d}={2.1,0}, o{E}={1,0,1}

A 0 0
u=-1,E={0 0 0 |.
_1

10—

N [—

100 A
32:01o,a2=-tr(E32):%,
001
\ _
300
2 -1 0 -1
BI:0%0+000
|
3 1 -
002: 2
1
L0
_ 3
=10 20
101
1
Lo
-1 0 012
a=-210 0 0 o%o =
_1
Lo —2ff1 01
| _
5 00 —%00
BO:O%O+OOO
1
10 oL
002: 2
000
_lo 1
=0 1 of.
00 0]

10 0][000
ao——%tr 0 00 0%0 = 0.
11

1 Ilooo

E; =-B, ;,(-E+4)", i=0

11
Ey=-B,(~E+A)'=| 0 -1
1 -1

)

11

2 2

E =-B(-E+A)"=]0 —%
1

0 3

1,2

N[—= O N|=

00 0
Ey=-By(~E+A) " =0 —%
00 0

Ci =daz_;, 121,2,3 .

s+1  s+1  s+1
(sE— A)" =% 0 —s-s 0
SES 2 g-2 s-2

W(s)=C(sE—A)"'B=
25t —5-2 -2s7+s+3 -2s*-3

-2 35—6 s—4
25t —s—1 —252-25+9 —252—s5+2

s+

Laverrier’s algorithm for singular systems — Mertzios
approach

The computation of (sE—A)™' can be carried out using
Cramer's rule, which require the evaluation n*> determi-
nants (n—1)x(n—1) of polynomial matrices. The algo-

rithm presented in the continuation is an extension of the
Leverrier's algorithm for this class of linear singular sys-
tems.

The transfer matrix function, can be rewritten as:

W(s)=C (Iz—(Iz—sE+A4))"' B

=C(Iz—1:1)7lB (13

where:

A=Iz—Es+A, (14)

and z is a new pseudovariable, which does affect on the
transfer matrix W(s) since it can be eliminated later.
Now it is clear that the Leverrier algorthm can be to

computed as the inver of the matrix (/z — 21) .
Therefore, the transfer matrix function W (s) can be ex-

panded:

W(s)=q"()C[z" " Ry(s)+ 2" *Ri(s)+...+

(15)
+zR, 5 (s)+ R, ()] B
where:
q(s)=z"+q ($)z" + ()" + ..+ q,(5) s
= det([z - 1:1) (16)
and:

Ro(s)=1, q(s)=-r{4]
Ri()= ARy(5)+ i1, 2(5) =~ 5 r{ AR (5)]

Ro(s)= AR (5)+ a1, q5(5) =3 r[ARy(s)]
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Rot(8)= AR, () + goily 4a() == LorldR, 1) (17)

The matrices R;(s), i=1,..,n—1 can also be computed
using the following expression:

Ri(s)= A" +q(s)A™ +q, ()42 +..+q:(s)]  (18)

The matrices R;(s), i=1,..,n—1 are no longer the coef-
ficients matrices of the power of s, but depend on the vari-

able s itself. This can be seen from (17), since matrix A
depends on s.

Since (15) is independent of z, in the continuation, for
the sake of simplicity, we shall take z =0. Therefore, the
relations (13 - 16) can be written as:

A=-Es+4, (19)
W(s)=—-CA"'B=q"'(s)CR,.(s)B, (20)
q(s)=q.(s). 2N

It should be noted that we have infinite number of forms

of 121 , W(s) and ¢(s) depending of pseudovariable z. It can
be seen from (17) that the degree of polynomial matrix

R.(s),i=0,1,.,n -1, and of polynomial quantity
q,(s) i=0.1,..., n, is equal i the most. Hence, R, (s) and

g, (s) can be written as:

R (s =)2Riksk , (22)
k=0

6 (s)= D aus* , (23)
k=0

where Ry (s) and g (s) are the constant matrix and scalar

of the power s, , respectively.

It is seen from (20) that for the computation of W(s), we
need only the quantities R,_;(s) 1 ¢,(s).

To this end the coefficient matrices R,_;;(s) are given
by:

n—l

R(s)=-adid =R, (s)= Y Rous"  (24)

k=0
will be computed recursively in terms of the coefficients
matrices Ry (s),i=0,1,...,n—2.

Substituting (19) and. (22) in the recursive relations
Ri(s),i=0,1,..., n — 1, in (20), we obtain the following

general recursive relations by equating the coefficients of
the power s in the two sides of each equation:

—ER: i —qiviily k=i+1

AR, —ER. ;1 +qiaiil, k=1,.,i
Rj+1,k — Jk Jk—1 Q+1,k (25)

ARy + Givi iy k=0

and:
iﬁt”[ERi,k-l] k=i+1
Gisik = _itr[ARl&k —ER ;] k=1,.,i 26)
_it”[ARi,o] k=0

Specifically, it is shown that generally R;; can be ex-
pressed in terms of R, ;, and R, ,;;, while R;,can be
expressed interms of R, and R;; interms of R;_, ;.

For W(s) computational purposes we need only terms
R 1x,k=0,1,...,n —1,and scalars g,,,k=0,1,...,n.

The formulas (25-26) are readily reduced to the Lever-
rier algorithm for normal (nonsingular) if we assume that
E =1, I being identity matrix. In that case, R;; 1 q;;, for
k=0, are identically equal zero.

Numerical example 3. System is given with the follow-
ing data:

2 -1 0 100

A=[0 1 1| E=|00 0
1 =10 00 1
10

B=|0 1 c:[ié‘ll]
11

i=0: Ryg=1, q=tr(ERy)=2,

1 00
Ry =—ERyo+ql,={0 2 0},
001
G0 =—1r(ARy o) =-3,
-1 -1 0
Ryog=ARyo+qiol,=| 0 -2 1 |.
1 -1 -3

i=1: g0 :—%f”(ARl,o) =3,

G2 = —%fV(ARl,l —ERy)=-4,

Grp = %IF(ERI,I) =1,

1 0 -1
Ryg=ARg+qrols=| 1 0 2],
-1 1 2
-1 -1 0
Ryy=AR, —ERg+q ;= 0 -2 1
0 -1 -1
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000 Q2,2:lt’”(ER1,1)=0~
Ryy =—ER 1 +q505={0 1 0]. 2
000
2
k
i s)= st =s
=2t g3 :—%”’(ARz,o):—lo q(s) ]Z:O:qz’k
1
¢y =7 r(ARy ) —ERy ) =3, 1 4s—3 2541
’ R(s):kZ;Rl,ksk:RI,O+RMSZ[_2S+3 2]

Gz = —%IF(ARz,z —ER,;)=-1,

IW@=J—d@w=l[

8s—6 6s —4}
q(s) s '

1 4s 3s
43 = g”’(ERz,z) =0,

Mertzios - Syrmos approach

000 It can be shown, that transfer matrix function of the sys-
Ryg=ARy o +q3013={0 0 0 tem given by (2), may be written in the form:
000
W(s)=q '(s)CR(s)B (27)
2
R(s) = ZRz,kSk =Ry +Ryus+ Rz,zs2 =q7'(s)CR,_,(5)B
5=0
—-s+1 =5 -1 R R n-2
- n-1n-1S T LGy p-08 t.
=l 1 -2 s-2 =4 I(S)C[ ...... N R,l,]llsz”,m )B
-1 —s+1 —s+2 ’

where g(s) is characteristic polynomial of (2), given by:
3
q(s) = Z%,ksk =430 t4q318 "“]3,252 + q3,3s3 =

k=0 ) The coefficient matrices R, ;,j=0,1,...,n -1, and
=-1+3s—s

q (S) ={qn (S) = qn,nsn + qn,nflS’Fl +..+ qn,ls + ('In,O (28)

coefficients ¢, ;,j = 0,1,...,n — 1, are given by the recur-

W(s)= L .z (5)B sive relations:
q(s) - ~ER i+ qugl, =i+
-1 ps-2 56 Rin; ={ARy —ER ;  + gL, j=lewi  (29)
B 5] > 5] >J J
—s +3s—1 —2s+1 -3s+2 ARiO+qi+1jIn ]:O
Numerical example 4. Singular system is given with the
following data: 1 ({ER ] it
11 12 e !
A= L 3} E= [2 4} , iy =g AR~ ERyy )] j=lei (30)
1 _ =
1+it’”[ARz,0] j=0
C—F 0} B_[Z 1}
11 0 1) where i =0,1,....n — 1.
. The initial conditions of (29) and (30) is:
i=0: Ryg=1r, qia=tr(ERyp) =5,
RO,O = In s (3 1)

=—tr(ARyo) =4,
0 (4Ro0) and final conditions are:

=31 R,.=0, j=01,..n 32
Rl,OZAR0,0+(]1,012:[3 _1:|, JJ J (32)

Symbol <Ak JE' > denotes the sum of all

k+1\ _ (k+1)!
( k )_ k!

' 1 the matrices 4 and E, appearing k and / times, respectively,
i=1: g0 =_§t”(AR1,0)=O, Le.

4 -2
Ry ==ERyo+qi1l> = [_2 1 } : terms which consist of all the products of

kol k-1l
1 A AE"+ A" E' A+
4921 :_Etr(ARl,l _ERI,O):lv <A E >_ T AR A2 L El4 (33)
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Theorem 2. The transfer function matrix W(s) may be
expressed directly in terms of E, 4, B, C and characteristic
polynomial coefficients as follows:

n-1
W (6) = OC(A" )Y g8
1=0

+C<A/,E°>B]

+
(34

Zq”*ﬂsl +...+C<A”‘1,E°>B]+_..+

n—j-1

+-1/[C(4%E) Z Guejorss” +C(AET)B

1=0

n—j-=2

Z Qo jorss” .t C(A4" ET) BsT ]+

=0
!

+(—1)"‘2[C<A°,E”‘2>BZ giys" 1+ C( A ET2) Bs" 2 )+

i=0

+=1)y'C (4% B Bs" ] =

n—1-1 n-1 ndl-1
=q 02, D (D CUE)BL Y uirasin]
k=0 1=0 j=0

In (34) exept for the matrices E, 4, B, C and the charac-
teristic polynomial g(s) the auxiliary sequence of the coef-
ficients g, , k, [ =0,1,..., n — 1, are also involved. These

cofficients may be determined either by using the recursive
relations (29-30) or by the following formulas:

Gio =—trd

q11 =trE

g2 = =3[ A(A=(trA)])]

go1 = =5 LA (A4 E' ) o (4 B ) (4° £ )1 -

—E[<A1,EO>—(tr<A1,EO>)<AO,E°>]]
Gnro = —ﬁ[A[A"’Z — A" (trd) -

- % A M AA - (trA)T]

1 S = 4" (i) 7%An — 5[ A(A—trD)]]]
_ 1 n-1-2 i\ _
Gty =~ A A E)')

~(r (A B ) (AP EY ) -

~(tr (4°(~E)' )(4"7 (-E)")...]
(A" E) )= {4 B {4 (E))

~tr{4a",(-E) ) (4" (-E)")..]] (35)
Proof. To prove (24), it is sufficient to express R(s)
=R, (s), and therefore the coefficients matrices R,_; ;,j=

0,1,..,n—1, in terms of matrices E, A, B, C and coefficients

9k, -
Using (29-30) recursively with the initial condition (31),
the matrix R,_; ; may be written in the form:

Rty =D [(A™ B )+ i (A7 B )+
ot oo (A BT N+ (<1 gy (A4 ) +
G (A" BT ) g (A0 BT+
ot gy (A" E )+

Gy (A2 E )+t gy (A0 EO)]] =

n—j—1

=2, 2(—1>f“ Qs (ALET) (36,

k=0 1=0

The substitution of (36) in (27) yields to the presented
formula (34).

In the sequel we shall derive an alternative closed-form
formula for the generalized transfer function matrix, which
expressed it in terms of the generalized matrix pencil (4 —
sE).
From the definition, given by (33), it results easily that:

n

(A+E)" =Z<Al’,E’H>. (37)

i=0

Therefore, it holds:
(A-sE)' = % <A",(—sE)"*">. (38)
i=0

Using (37) and rearranging the terms on the right side of
(34), we obtain the following more concise expression for
the generalized transfer function matrix:

W(s)=q ' (s)N(s). (39)
where:

N(s)=C[(A=5E)"" +(qi1s + qio (A~ sE)" > +
+(qn72,n72sn_2 + qn72,nf3sn_3 + qn72,0 )(A - SE) +
Hpor g 8"+ Gt a8+t g 0) 1B (40)

Numerical example 5. Let us consider, linear singular
system, given by:
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W(s)=q" @IC{AE")BY g5

=0

+C<A1,E°>lelql,,s’+C<A2,EO>B—

1=0

—[C<A°,E1>Biql,,s’” +C(4',E") B+

=0
+C(4°,E*)Bs’].
Go=-3, q1=2, g =3, g =-4.

g =1,q33=0,93=-1,q31 =3 ,g3 =1

00 2 2
cs=|§ V] cas=|3 3.

.. [4 0 o -1
e[t 0], o]0 ).

C(AE+EA)B:F ! }

6 -2
2p |0 -1
crne0 1]
2
W(s) = 21 s—2 s°-6 .
—s*+3s—1|2s+1 —3s5s+2

Numerical example 6. Let us consider, linear singular
system, given by:

11 12
A=l a) F=l )
10 21
c=[i 1) 5[ 1)
QI,O =—1r4 :—4, ql,l =trE =5 N
oo = —%tr[A(A —(trd)I1=0,

0o, ==t AI=( A B )+ e (4° E')) (4° E°)) -

—E[(A"E*)—(tr (4" E")) (4" . E*)] =

= —%tr[A(—E +(trE)L)] - E[A—(tr)1,]] = 1.
422 = =3 tr{=E[(4"(~E)' ) = (r(~EN (A, (~E)" )1

- —%tr[—E[—E —tr(~E)[,]=0.

21 20
cn-[2 1], can[2 Y]

2 -1
ces-[2 1]

1
W(s$)=q" ()[CBY_ qus' +CAB~CEBs] =
1=0

=q " (s)[CB(q10 + q1.,5) + CAB— CEBs] =
_1|8s—6 6s5s-1
sl 4s 3s |°

Mehtod - Rachid

Consider single input — single output singular system
under the state space for:

EX(t) = AX(1) +bu(t),

41
%0 = x(0) @b

Corresponding transfer matrix is:
W(s)=c¢"(sE-A)'b. (42)

It is assumed that A is non singular (regular) matrix.
Equation (41) can be rewritten as follows:

x(1)=Dx(t)-du(?), (43)
where:
D=A"E,
From. (41- 43), follows:

d=4"p. (44)

x, () = ¢"x(t) = e (DX(1) — du(?))

45
=" D(Dx? (t) - dui(t)) — " du(t) = ... “5)
which gives at the n-th order:
x.(t) =" D"x" () =" D" 'du" (1) 6

—...—c"du(r)
Applying this procedure to x;(¢) = ¢’ X(¢) , gives:
@O =¢"D"'x"({)-..—c"du(t), (47

and similarly to all derivatives of x;(¢), till the n-th one,
which gives:

X" =c"x". (48)
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Summarizing these relations under a matrix form, yields:

X; cTDn
) T yn—1
xl-‘ _|c D XM _
xi(n) cr
¢d ¢'Dd - ¢'D"d y
0 c¢'d - D" 40
- : : (49)
0 0 - c'd u(nLl)
() () ()
or:
[Cx, ()]Dx; (1) = [Cx()]x" (1) (50)

+[Cu()]Du(t)’
where [Cx;] is (n +1) identity matrix:

Dx'(ty=[x, x" .. x"7,

1

DuT(t):[u ul u<")]T,

and where [CXx;] is (n +1) x (n +1) matrix.

[Cu], is also, (7 +1) x n matrix

Then one has to constitute the following ma-
trix [Cx(¢)Cx;Cu(t)] of order (n+1) x (3n+1). By perform-
ing Gaussian elimination we can have zero elements in the
last row 7.

If one has to extend this method to the class of multi-
variable singular control systems, then having in mind the
principle of superpossition, the proposed method should be
used for every transfer function conecting every input with
every output, which is not such in general difficult task.

Numerical example 7. Consider the multivariable linear
singular systems:

2 -10 1
A=]0 1 1 E=|0
1 0 0

00
0 0].
-1 01

10
B=|0 1 c:B (1) ﬂ
11

This is two input and two output system.
For the sake of simplicity we shall use the following no-
tation:

X, (1) = y().
a) 1-st input, 1-st output:
1
b=|0{,c" =[11 1].

1

1 0 —-1|1 0

d=4"p=|1 0 =2([0|=|-1

-1 1 2|1 1

1 0 -1
D=A"E=|1 0 =2
-1 0 2
2 0 -3 5 0 -8
D=3 0 =5|,D°=| 8 0 -13
30 5 -8 0 13
c'D*=[21 0 -34], <('b=-2,
'D*=[8 0 -13], c"'Db=-5,
c'D=[3 0 -5], <'Dbh=-13.
21 0 -34
8 0 -13
[Cx]= 30 -5
11 -1
1000 2 5 13
0100 02 5
(1= 0 1 o] =g ¢ 2
0001 00 0
[CxCyCul=---=
1 1 -1 0 001 O 0 0
021 -34 1 0O 00 2 5 13
1 8 16 2 1
00 =57 =21 1 OO0 =51 31 31
0 0 0 1 =310 2 -1 0

y=3y+y=2u—u.
s—=2

§)=—3>—"—".

Su® —s? +3s-1

b) 1-st input, 2-nd output:

1
b={0|,c" =[1 0 1];
1

0
d=A"p=|-1],
1
0 -1
D=A"E= 0 -2,
-1 0 2

dD*=[3 0 5], c'b=1,
c'D*=[-1 0 2], 'Db=1,

c'D=[0 0 1], Dh=2.
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-3 05
-1 0 2
[Cx]_ O 0 1 s [Cy]_]4:
1 01
-1 -1 2
0 -1 -1
[Cul= o o o
0O 0 O
[CxCyCul=---=
035100 0-1-1-2
=0 -1201 0 0 0 -1 -1},
00100100 0 -1
00 001 -3120 -1 2

Since the first column equals zero, the following subma-
trix is substracted for the purposes of basic order equatation
reduction:

20 1 0 00 -1 -1

_1 1 1
00210022.
0600 1 310 -1 2

such that:

y=3y+y=2u—u.

—2s+1
§)=—""—
Su(s) —s+3s—1
¢) 2-nd input, 1-st output:
0
b=[1{, " =[11 1]
1

-1 1 0 -1
d=4A"p=|2|D=4"E=|1 0 -2/,
3 -10 2

c'D*=[21 0 -34], 'b=-6,
c'D*=[8 0 -13], ¢'Db=-18,

c'D=[3 0 -5], 'D*b=-47.

21 0 -34
8 0 -13
[Cx]_ 3 0 _5 H [Cy]_149

1 1 -1

6 18 47

0 6 18

[Cl=o 0

0 0 O

1 1 -1 0 001 0 0
021 -3 1 0 00 6 18
[CxCyCu]=---= 1 8 48 18
00 21 21 00 21 21
0 0 0 1 310 6 0

y=3y+y=6u—iu,

s2—6 )
—s? +35-1

Siz(s5) =

d) 2-nd input, 2-nd output:

'D*=[-3 0 5], 'b=2,
c'D*=[-1 0 2], ¢'Db=3,

c'D=[0 0 1], D*»=7.

-3 0 5
-1 0 2
[Cx]= 0 0 1| [1=14,
1 01
-2 -3 -7
0 -2 -3
[Cul=ly o 2
0o 0 O
[CxCyCu]=---=
0351000 -2 -3 -7
=0-120100 0 -2 -3
00100100 0 -2
0000101 0 -2 3

y=39+5=301-2u,

—35+2
§)=—5"—"—.
f2() —s? +35—1
And finally:

) fn(s)
W(S)‘[le(s) fzz(S)}

0
47

21
-1
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Fundamental matrix of the discrete descriptive
system

In the sequel some contributions derived in the pa-
pers of Lewis (1985.a), Mertzios, Lewis (1989) and Lewis,
Mertzios (1990) are presented.

For the classical state space equations an analysis may
be accomplished in terms of only matrix 4.

It is well known that in the singular case, eq. (1-2) an
analysis in terms of £ and 4 is not possible. Auxiliary quan-
tities that have been used in the analysis of these systems
have included the Drazin inverse of related matrix, the
transformation to Weierstrass form and deflating special
subspaces. Some other approaches, algorithmic in nature,
are also important.

The sequel will show that the analysis of linear discrete
descriptor systems can not be performed upon only the
knowledge of basic system matrices £ and A. This fact fol-
lows due to new concept introduced in Lewis, Mertzios
(1990) denoted as relative fundamental matrix.

We are concerned with the discrete descriptive of equa-
tions:

Ex(k +1) = Ax(k) + Bu(k),
k=0,1,2,...,N—1

(51

x; (k) = Cx(k), (52)

with unusual notation and under the assumption that the
discrete system under consideration is a regular one.

The interval of interest of index k is k€[0,N] and
u(k)#0, Vk=0,1,...,N-1.

For regular matrix pencil (£, A), the Laurent series ex-

pansion about infinity for the resolvent matrix exist and is
given by, Rose (1978):

(E-A)" =21 gz, (53)
where v is index of nilpotence and sequence ¢ (which

should be determined in the sequel), is known as the (for-
ward) fundamental matrix.
The Lauren series expansion about zero, is:

(zZE-A)" = i vz, (54)
i==p

where sequence y; shall be known, for the reasons to be
seen, as a backward fundamental matrix.

In the state — space £ = I, we have that (151 =0 for i<0,
and ¢ =4 for i >0.

If E=171and det4=0, then w; =0 for i >0, and
w,=A" for i<0.

Relative fundamental matrix of discrete descriptor sys-
tem, which according to its nature, may be called the fun-
damental matrix sequence, is of particular importance in the

study of descriptor systems.
Some of these basic questions are:

— Determination of state space response
— Determination of resolvent matrix

- Finding expressions of controllable and observable ca-
nonical forms

— Determination of transition matrix
— Determination of Hankel's matrix, Markov's parameters

and Tschirnhausen's polynomials.

In the sequel, only the two first questions will be dis-
cussed.

The fundamental sequence obeys the following proper-
ties:

Theorem 3. Let us consider regular matrix pencil and let
fundamental sequence ¢, be defined by (53).

Then:
¢iE_¢i—lA = Ié‘oi’ (55)
Eg—A¢g =15, (56)
(4,4) ¢, =4, i>0, (57)
(—.E) " g1 =4, i<0. (58)
$=0, i<—pu (59)
¢1E¢1 = ¢/E¢ia (60)
0. ;,i<0,j<0
¢iE¢j= ¢i+j’ lZO,]ZO, (61)
0, anywhere
_¢i+j+la i< 0,j <0
$Ap; =4 bij, 020,720 (62)
0, anywhere

For the sake of brevity the proof'is omitted here and can
be found in Lewis, Mertzios (1990).

The following exposure presents some of particular
cases of (51) and (52).

These results are given in the form of the following cor-
ollary.

Corollary 1.

(4,020
b _{O,i<0’ (63)
gt = {0120, (64)
£ ={ 120 (65)
[fi =0
thAg, _{ 0,1 i<0 (66)

There have been several interpretations of (51).
From dynamical standpoint we may consider that the ini-

tial condition x(0)is given and that it is desired to deter-
mine x(k) in a forward fashion from the input sequence
u(k) and previous values of the semistate.

A variant of this is to consider x(N)as given and then

determine x(k) in a backward fashion from the input and
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the future values of semistate.

Another interpretation, arising in economics is to con-
sider that (51) describes a relationship that holds between
the states and the inputs. That is, no causality is assumed. It

is desired to determine, given the sequence u(k) and ad-
missible x(0) and x(N), the semi-state for intermediate

values £.

Usually this is called symmetric solution.

Our aim is to provide some unified treatment of these
different problems. In this section we present closed-loop
solutions (51) in the forward and backward case.

For the causal solution, consider that X, is given along

with the sequence {u} .

Then formal application of the Z — transform, to (51),
yields:

X(z) = (zE - A) ' zEX(0)

+(zE - A)'BU(2). 67)

Now, using (53) and convolution theorem, we discover
that:

k+v—-1

D biaBu). (68)

i=0

x(k) = ¢ £x(0) +

This is the forward solution for (51).
If £ =1 itreduces to the standard state space result.
To obtain backward to (51), given the final condition x,

and uy; , take the Z — transform of (51), to get:

X(z) = ~(zE — A z VM EX(N)

4 (69)
+(zE—-A)" BU(z2),
then apply (54) to obtain:
N-1
X(6) =i v EX(N)+ Yy BuG),  (70)
i=k—y

backward semi — state solution.
We define also the backward semistate — transition ma-

trix for (51) as —w E.

These solutions are given in the form of fundamental
matrix ¢ and the backward matrix ;. A generalized
Leverrier technique for computing ¢, is known, so that we

may assume that these fundamental matrices are given.
Some aspects of this problem will be presented in the se-
quel.
It is worth examining (68) the case when the descriptor
systems, given (51) is in the Weierstrass form:

x,(k+1) =Jx;(k)+ Bu(k), 71)

Nx, (k +1) = Ix, (k) + Bou(k), (72)

where x,(k) e R", x,(k) e R"™ J is Jordan matrix, and N
a nilpotent Jordan block with v = Ind (N) .
Then, the forward solution of (68) becomes:

k-1

x, (k) = J*x,(0) + z JB (i), (73)

i=0

v—1 v—1
X, (k) = —Zfs,.(k)zvfx2 (0)— ZNfBZu(k +i). (74)
i=1 i=0

The first term in (74) has evidently not been displayed
elsewhere, in scientific papers. It has a satisfying relation-
ship to the well known impulsive terms in singular continu-
ous systems due to the initial conditions. Those values of

X,(0) guaranteeing that (74) is equal zero for k<0, are

called admissible initial conditions.

Two additional aspects of the forward solution, (68), are
worth noting.

First, based on (57-58), it can be said that:

/=
x(6) = (dh4) HEX(0)+ Y (h4)" ghBu(k)
ke . (75)
+ Z (~¢E) " ¢ Buk), k=0
i=k
making the calculation of x(k) easier, since it is necessary
only to know ¢, i ¢, .
Theorem 4. For k& >0, (68) is equivalent to the forward

recursion:

x(k) = gy Ax(k —1)

+¢_Bu(k)
+@yBu(k 1) (76)
+d_Ev(k+1),
and also to backward recursion:
x(k)=—¢_ Ex(k+1) 77)

+ ¢ Bu(k)+ gy Bu(k —1)+ gy Av(k -1),

where the intermediate input sequence v(k) is defined in
terms of u, , by:

k+v—1

> fiiBulk) (78)

i=0

v(k) =

The proof is omitted here, for the sake of brevity.

Finally, the results which follow, will lead to the expres-
sions for forward and backward fundamental matrix se-
quences,

Mertzios, Lewis (1989), and Lewis, Mertzios (1990).

Theorem 5. Let (51) be regular and sequence ¢, is de-

fined by (53).
Then for any ¢ € R, such that det(cE—4)#0:

~ (EP A EP(cE - A)™ i20 o
4= D il 7 Dy 4D onlli<0 (79)
(APEY'(I—EEP)AP (cE-4)" >
where:
E=(cE-A)"E, 80)
A=(cE-A)"A.

Proof. Simply compare (68) term by term to the classical
solution, given for example in Debeljkovic et. al (1988).

In any case the Drazin inversion is not avoidable.

From the preceding Theorem the following result can be
generated.

Corollary 2. Let system, given (51) is regular. Then for
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any ¢ € R such that det(cE — A) # 0, follows:

¢y =EP(cE—A), (81)
¢, =(I—-EEPYA(cE-A)", (82)
¢ = (hA) . >0, (83)
¢ =(—¢ E) g, i<-1. (84)

Proof. To obtain the first two equations, evaluate (79)
fori = 0 and i=-1.

It is worth discussing further the meaning of V/;, e.g.

backward fundamental matrix sequence.
Define the backward matrix pencil as (zA—E). Its

properties are exactly the some as those of (zE — A4) with

matrices E and 4 interchanged.
Then, setting:

w=z, (85)
we may use (54), to write:

(zA-E)" =—w(wE - A)™

= —wi v W (86)
i=—p

o0
1 i
=-z E vz
i=p

By comparison of (86) to (53) it is concluded that —y; is
fundamental matrix sequence of “backward’ matrix pair
(zA—- E) with p being nilpotence index.

Therefore, if matrices £ and A interchange, Theorem 4.
and Theorem 5. will give the properties of ;.

Finally we can give the following expressions:
Yi=hE, Y =-wL, (87)

if nececcary.
These expression are connected for so called transition
matrices of the discrete descriptive linear system.

Conclusion

The first part of this paper is dedicated to the question of
how it is possible to calculate the transfer function matrix
for particular class of linear continuous singular, regular
system. It has been shown that some numerical algorithms
are very applicable for these purposes. Aport from this,
some specific properties of this class of system such as the
question of strict properness, makes a lot of additional
problems.

This implies the varaity of methods presented here in
this paper.

A number of algorithms were presented, which allows
the computation of transfer function matrix of a singular
system from its state space description without inverting
some particular matrices.

All presented methods have been followed by a suitable
choice of numerical examples.

The second part of the paper presents several approaches
of computational procedure for calculating the so called
fundamental matrix sequences for linear regular causal dis-
crete descriptor system, operating in free regime. Forward
and backward fundamental matrices have been defined in
order to calculate state space response of the systems under
consideration. Some theoretical discussions have been pre-
sented to underline the applicability of the approches pre-
sented.

Appendix A — Solvability

The singular system is regular, when the matrix pencil
(cE —A) is regular, i.e.

Jce R: det(cE—A)#0, (A.1)

and then solutions of (1.1) exist, they are unique and for so-
called consistent initial conditions' generate smooth solu-
tions.

Moreover, the closed form of these solution is known,
Campbell (1980, 1982), Dai (1989.b).

In some circumstances, it is useful to introduce the linear
nonsingular transformation of system governed by (1.1), in
order to get the first canonical form of linear singular sys-
tem, as:

X (1) = 4%, (1) + A%, (1), (A2)

0= 4%, () + 44x, (1), (A3)

The regularity condition (B.1) form, the system given by
(B.2 — B.3) reduces to the following:

sI—A4, -4,
det #0, (A.4)
-4, -4,

which is equivalent to:
det(s — 4, )det(—A, — Ay(sT— 4;)™ 4,)# 0, (A5)
or:

det A, det((sI - 4,)— 4,4, 4;) # 0, (A.6)

Instead of (B.11), the following condition can be veri-
fied, Campbell (1980).

N() N N(E) = {0}, (A7)

i.e. N(4) and N(E) have only the trivial intersection where
N(+) denotes the null space or kernel of matrix (-).

Owens and Debeljkovic (1985) showed that (A.7) is
equivalent with:

Wis N N(E) = {0}, (A.8)

W+ being subspace of consistent initial conditions.

It should be noted that condition (B.1) guarantees (B.8)
and (B.9), but vice versa must not be true.

Alternative characterizations of regularity condition of-
fered by other authors are also presented in current refer-
ences.

¥ See, Debljkovic et al. (1996.a)
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Apendix B - Some specific features of transfer
matrix function

Defintion B1. Matrix of transfer function is strictly proper
if the following condition is satisfied:

lim W(s) —» 0, (B1)
§—>0
where 0 denotes null matrix of appropriate dimension.
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Matrica prenosnih funkcija i fundamentalna matrica linearnih
singularnih sistema

Matrica prenosnih funkcija ima veliki znacaj pri ispitivanju dinami¢kog ponaSanja savremenih sistema automatskog upravlja-
nja sa pozicija ulazno-izlaznih relacija. Veza sa frekventnim domenom je ocigledna pa uprkos ¢injenici da se moraju pretposta-
viti nulti pocetni uslovi ovaj prilaz ima svoje potpuno opravdanje. Imajuéi u vidu da se i za posebnu klasu linearnih singularnih
sistema moZe odrediti matrica prenosnih funkcija, bilo je od posebnog interesa pokazati kako se prakti¢no ra¢una u slucajevi-
ma kada je red sistema relativno visok. U radu je prezentovan odredeni broj metoda koje, koriste¢i savremene numericke algo-
ritme, omogucavaju efikasno sra¢unavanje matrice prenosnih funkcija kako za jednostruko prenosne tako i za viSestruko pre-
nosne linearne singularne sisteme automatskog upravljanja. Sva izlaganja propracena su paZljivo odabranim primerima koji su
dovoljno rediti da ilustruju sve prednosti predloZenih postupaka.

Fundamentalna matrica ima poseban znacaj kada su u pitanju linearni deskriptivni diskretni sistemi. Njeno sratunavanje ne
zahteva primenu Drazinove inverzije ali zato zahteva razvijanje odgovarajuceg matri¢nog para u Laurentov red. Procedure ove
vrste prikazane su i propraéene odgovarajuéim primerima.

Kljucne reci: Linerani sistemi, singularni sistemi, deskriptivni sistemi, prenosna matrica, fundamentalna matrica.

Marpunia nepegaToyHbIX (PYHKINNA U (pyHIaMEHTaTbHAS MaTpHIla
JIMHENHBIX CUHTYJISIPHO-€CKPUITUBHBIX CACTEM

Martpuia nepefaTouHbIX (yHKIUA AMeeT GOTbINOe 3HaUeHUE IPH HCCISNOBAHUE THHAMHIECKOTO NOBEJACHUS COBPEMEHBIX
aBTOMAaTHIECKUX CHCTEM YIIPABJIECHAS CO MO3AIAA BBOJJHO-BLIXOAHBIX persuit. CBSI3b C 4aCTOTHOM 06NacThIO KESTENLHOCTA
OYEBHJIHA, K BoIpeKd (hakTaM, YTO Hy>KHO IPENIOIOXKATEL HyNeBbIe HCXOHbIE YCIOBHS, 3TOT MONXON ABISETCA COBceM o6oc-
HOBaHbIM. ViMes B BIjly, 9TO U A7 0COOOTO Kilacca NAHEHHBIX CHHTYJSIPHBIX CHCTEM BO3MOXKHO OIIPEACINTH MATPHIY Hepe-
HaTOYHBIX (PYHKIMHA, OT 0cOG0Or0o MHTEpeca GBLIO MOKa3aTh KaK IMPAaKTUIECKH CIUTACTCA B CIydasix KOTfia MOPSTOK CHCTEMBI
OTHOCHTENBHO BLICOK. B paboTe MpHBE[eHO M3BECTHOE UHMCIO METOROB, KOTOPHIE MOMNb3ys COBPEMEHHBIE U(MPOBLIE aJIro-
pETMBI, oGecneunBaroT 3¢ eKTUBHOE NMOACIUTHIBAHWE MATpHILI IEepefaTOUHBIX (hYHKUMI, KaK [ OJNHHAPHBIX Iepe-
JaTOYHEX, TaK U JJISI MHOTOKPaTHBIX IEPEAAaTOYHBIX JIMHEHHBIX CHHTYJISPHBIX aBTOMaTHYCCKHUX CHCTCM YIIpaBJICHWS. Bcee
OOBsACHEHHSI MPOBEACHBI BHAMATEIHHO ObIOpaHBIMH NpPAMEpPaMH, KOTOPHIE AOBOJIBHO HILUTIOCTPHPYIOT BCE NMPEHMMYIIECTBA
TIPEIOXEHHBIX NOCTYIIKOB.

dynpaMeHTANbHAA MAaTPHALA MMeeT 0co00e 3HAYEHUE KOrja pedb HAET O IMHEHHBIX JECKPANTABHBIX CAEPXKAHHBIX CHCTEMAX.
Ee mocunrhBanme He TpeGyeT MpuMMeHeHMs: MHBepcrH [IpasuHa, HO 3aT0 TpeGyeT pa3BUTHS COOTBETCTBYIONIEH OCHOBHOM
napsl B nopsfok JlaspenTta. ITpouenypsl 3Toii KaTeropud MOKa3aHbl ¥ NPOBE/IEHbI COOTBETCTBYIOIIUMH IIPAMEPAMH.

Karuesvie caosa: TAHEHHBIE CACTEMBI, CAHTYISPHBIE CHCTEMBI, JECKPUIITHBHbIE CACTEMEI, IEpeflaTouHas MaTpuna, hyHna-
MEHTAJIbHA MaTPHIIA.





