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Discrete descriptive systems are those the dynamics of which is governed by a mixture of algebraic and differential 
equations. In that sense, the algebraic equations represent the constraints which must be fulfilled in every moment of 
the system behavior. It means that a general solution of system equations has to possess the same properties. The 
complex nature of discrete descriptive systems causes many difficulties in the analytical and numerical treatment of 
such systems, particularly when there is a need for their control. In that sense the question of their stability deserves 
great attention and is tightly connected with the questions of system solution uniqueness and existence. Moreover, the 
question of consistent initial conditions, time series and solution in state space and phase space also deserve a great at-
tention. Some of these questions, which do not exist when normal systems are treated, will be the subject of discussion 
in the sequel. These specific features of discrete descriptive systems can explain some of their unusual behaviors in 
transient responses. Some numerical examples have been worked out to illustrate the applicability of results presented.  
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Introduction 
ISCRETE descriptive systems are those the dynamics 
of which is governed by a mixture of algebraic and dif-

ferential equations, which disables one to make their repre-
sentation in the state space in the classical form of the vec-
tor differential state equation. As the consequence of this 
fact one cannot use typical tools for solving system 
equations as in the case when normal systems  are treated.  

In that sense, the algebraic equations represent the 
constraints to the solution of differential equations which 
they have to fulfill in any moment.   

The complex nature of discrete descriptive systems cau-
ses many difficulties in the analytical and numerical treat-
ment of such systems, particularly when there is a need for 
their control. In that sense the question of their stability de-
serves great attention and is tightly connected with the 
questions of system solution uniqueness and existence. Mo-
reover, the question of consistent initial conditions, time se-
ries and solution in state space and phase space based on di-
screte fundamental matrices also deserve a great attention. 
Some of these questions do not exist when normal systems 
are treated.  

The survey of updated results for generalized state space 
systems and a broad bibliography can be found in 
Bajić(1992) [1], Campbell (1980, 1982) [2,3], Lewis (1986, 
1987) [16,17], Debeljković et al. (1996.a, 1996.b, 1998, 
2004.a, 2004.b) [9,10,11,12,13] and in two special issues of 
the journal Circuits, Systems and Signal Procesing (1986, 
1989) [5,6]. 

Mathematical description of discrete descriptive 
systems in the state space  

The general description of this class of systems in the 
state space is given by the following equation*)

f (k, x(k+1), x(k),...,x(0),  xi(k), u(k), u(k-1),..., u(0)) = 0 (1)

or by 

kf (x (k+1), x(k),..., x(0),   xi(k) 
u(k), u(k-1),...,u(0)) = 0 

(2)

( )i kx = (k, x(k+1), x(k),..., x(0) kg
u(k), u(k-1), ..., u(0)) = 0 (3)

where, in general, the vector functions   (   ) and  (   ), 
are such that 

kf kg

: R R R Rn m
k × × →f  

: R R R Rn m
k × × →g  

where ( ) ( )k kT=x x  is the state vector,  is the control 
vector,  is the output vector, T is the period, and k is 
the moment of sampling.  

( )ku
( )i kx

One of possible canonical forms of the system under consi-
deration, when the functions (  ) and (  ) obey linear 
features, is  

kf kg

__________ 
* Usual notations are presented in Appendix A 

D 
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( 1) ( 1) ( ) ( ) ( ) ( )E k k A k k B k k+ + = +x x u

u

x

 (4)

( ) ( ) ( ) ( ) ( )i k C k k D k k= +x x  (5)

0(0)E E=x , k = 0, 1, 2, ... N - 1 (6)

and corresponds to the non-stationary, non-autonomous di-
screte descriptor system.  

Eq.(4) represents a vector state equation and eq.(5) is the 
actual output vector equation of dynamical discrete desc-
riptor systems.  

The time varying matrices  ( ), ( ), ( )A k B k C k , 
 are of appropriate dimensions with the invariant 

rank matrix  necessarily singular.     
( 1E k + )

)

)u

( 1E k +
A particular formulation of a set of dynamic relations is 

provided by a set of equations of the following form, Luen-
berger (1977, 1978) [18,19] 

1 ( 1) ( ) (k kE k A k k+ + = +x x  (7)

( ) ( )i kk C k=x x , 
k = 0, 1, 2,..., N - l 

(8)

which enables one to present them in the block matrix form 
as  

0 1

1 2

1

1

0

0
0

N

N N

A E
A E

x

E
A E

−

−

−⎡
⎢ −⎢
⎢ ⎥
⎢ ⎥
⎢
⎢
⎢

−⎢⎣

⎤
⎥
⎥

⎥
⎥
⎥
⎥⎦

 

 

           x  =  

(0)
(1)
:
:

( 1)
( )
N

N

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥⎣ ⎦

x
x

x
x

(0)
(1)

( 1)N

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

u
u

u

(9)

The block matrix form, with each block being n× n, 
explicitly displays the fact that the set of dynamic equations 
can be regarded as one (large) system of linear equations.  

In a particular case, which is most treated in the literatu-
re, matrices in the state equation are usually defined over 
the field of real numbers so that the vector functions  
and  are linear. The simplest  state space description 
(matrix description) of this class of the systems is given 
with 

( )kf

)u

( )kg

( 1) ( ) (E k A k B k+ = +x x  (10)

( ) ( )i k C k=x x    k = 0, 1, 2, ...  N - 1 (11)

This description will be treated in this paper in the 
sequel.  

A specific feature of this class of systems is the 
possibility to represent them in the form of finite time seri-
es, Dai (1989) [7,8] with the time - invariant matrices of 
appropriate dimensions and with the matrix E necessarily 
singular and with rank defect**). In that case, the finite time 

series of input variables u(0), u(1), u(2), u(L), determine 
the states x(0 ), x(1), x(L) of the system given by eq.(10 - 
11) which are completely defined and satisfy the following 
equation 
 

A E
A E

A E

−⎡ ⎤
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

(0)
(1)
:
:

( )L

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

x
x

x

=             (12) 

(0)
(1)

:
:
( )

B
B

B L

⎡ ⎤
⎢ ⎥
⎢
⎢
⎢ ⎥
⎢ ⎥⎣ ⎦

u
u

u

⎥
⎥

 
It should be noted that the block matrix (12) has dimen-

sions nL× n(L+1), which means that for the given finite ti-
me series of input variables there are n independent soluti-
ons, if they exist at all.  

If there exists a condition or a relation, such that diffe-
rent solutions are determined by this relation at least in one 
point, then such a realation is called the complete condition.  

Luenberger (1977) [18] has shown that only with regular 
linear discrete descriptor systems the complete condition 
can be chosen from sequences x(0), x(1), x(L), in such a 
wey that any state x(k), 0 ≤  k ≤  L, is uniquely determined 
by this condition and input les u(0), u(1), u(L). 

The nature and specific features of this class of sys
variab

tems, 
wh

Solvability of linear discrete descriptive systems  
 

du

enberger 
(1

 given by eq. (9).  

ich are not of particular interest for these investigations, 
can be found in Debeljković et. al (1998, 2004.b) [11,13] as 
well as some of their clasifications and particularities.  

The basic questions of singular system solvability are
e to Godbout and Jordan (1975) and successfully solved 

in mathematical sense by Campbell et. al (1976).  
Based on the descriptor discrete time model, Lu

977, 1978) [18,19] has generated a very well known 
“shuffle” algorithm as a new test for investigating system 
equation solvability. Moreover, he gave and excellent 
explanation of this concept establishing its natural connec-
tion with the system conditionability as a dual concept. 

For the necessities of these exposures we shall consider 
the system

In eq.(9) there are (N+1) unknown vectors x(k), 
x(k)∈ R n , but there are only n matrix equations (each of 
wh

calar quantities, an excess of n 
un

 
or

ich is n – dimensional).  
There is, therefore, an excess of unknown vectors over 

equations – or in terms of s
known to equations. Under standard nondegeneracy con-

ditions, one expects that the system given by eq.(7) posses-
ses not one but a family o  n  linearly independent solutions. 
This is formalized by the notation of solvability introduced 
below. Moreover, this fact makes it possible to consider 
such systems as systems consisting of two parts: one slow 
(differential system equations) and fast one (algebraic), 
what can ensure the recursive computation of system solu-
tion under the known input sequence***) u(k).  

Let us denote the coefficient matrix of (9) with F(0, N). 
It can be regarded as an ( 1)N N× + block matrix or in

dinary terms as an ( )1NnN n× +  matrix. 
The block matrix F(0, N) is usu lly called the coefficient 

matrix. Now we can lowing de
a

 give the fol finition, Luen-
berger (1977) [18] . 

__________ 
**Rank of matrix E is equal to q, q<n and terminal point satisfies: k=L≥n  
__________
***The systems that  satisfy this condition should be called regular

systems.
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Definition 1. The linear dynamical discrete descriptive 
system, given by eq.(7), is said to be s o l v a b l e if its co-
efficient matrix F(0, N) is of full rank. 

The matrix  (expressed in the block form) (0, )G N

1

1 2

2

1

1

(0, )

N

N

E
A E

AG N

E
A

−

−

⎡
⎢−
⎢ −⎢=
⎢
⎢
⎢ ⎥−⎣ ⎦

⎤
⎥
⎥
⎥
⎥
⎥

 (13)

can be added to the set of eq.(7). 
The matrix  is the submatrix of the matrix (0, )G N
(0, )F N , obtained by eliminating the first n and the last n 

columns. It is referred to as the condition matrix.  
Another test of solvability can be given in the following 

manner: 
Definition 2. The linear dynamical discrete descriptive 

system, eq.(7), is said to be c o n d i t i o n a b l e  if the 
matrix G(0, N) is of full rank. 

Remark 1. Both Definitions can be applied to the time 
invariant linear discrete descriptor system given by eq.(10) 
without any limitations. 

It is obvious that solvability and conditionability are dual 
concepts. 

The most important result from the previous section is 
given in the following Theorem, Luenberger (1977) [18]: 

Theorem 1. System given by eq.(10) is solvable if and 
only if 

det( ) 0A zE− ≠  (14)

It is obvious that if the condition of Theorem 1 is satisfi-
ed, the matrix pair (E,A) is said to be regular.  

If the determinant of the matrix pair (E,A) is identically 
equal to zero, then the matrix pair (or the discrete descriptor 
system) is irregular.   

Such systems may be without solutions, solutions may 
be nonunique. In the last case there may be finite and 
infinite numbers of solutions. 

In order to put discussions into a rigorous mathematical 
form, some important results will be presented, in the 
sequel, Campbell (1980) [2]. 

Definition 3. Let the matrices  and , n nE A C ×∈ 0k ∈  K. 
 is called the vector of initial consistent 

conditions associated with the moment  if eq. (10) has at 
least one solution. 

0( )k = ∈x x R n

0k

Definition 4. Eq.(10) is tractable if it has a unique solu-
tion for any consistent initial vector. 

Definition 5. If linear homogenous eq.(10) is tractable at 
least in one discrete moment  ∈ K then it is tractable in 
every discrete moment  ∈ K. Therefore, is simply said 
that it is  tractable.  

0k
k

Theorem 2. For the given matrices , Cn nE A ×∈ , the 
homogenous algebraic – difference equation is tractable if 
and only if there exists the scalar Cz ∈ , such that there 
exists the matrix 1( )z E A −+ . 

When the systems of high order are treated, checking 
system solvability in the before mentioned way may be an 
extremely difficult task. To find such a complex number z 

which would guarantee that the inverse matrix 
1(zE A)−− exists is sometimes an impossible task.  

Therefore, some authors were looking for some other 
approaches to solve this significant problem. Since this 
system feature is based on the system matrices (E, A) only, 
the following Theorem  has a complete analogy with the 
similar result deduced for continuous linear singular 
systems.  

Theorem 3. The following statements are equivalent, 
Yip, Sincovec (1981) 
 
a) (A,E) is solvable if  ( )det 0zE A− ≠  

b) If 0X  is the null space of the matrix  A  and     
      { }1( ) : ( )i iX t A t EX −= ∈x x   

       then { }( ) iE Xℵ ∩ = 0 , 0, 1, 2, ...i∀ =  

c) If  0 ( )TY A=ℵ  i   
      { }1( ) : ( )i iX t A t EX −= ∈x x  

      then { }( )T
iE Yℵ ∩ = 0 , 0, 1, 2, ...i∀ =   

d) Matrix 

0 0
0

0 0( ) 1

0

E
A E

AG n n

E
A

⎡ ⎤
⎢ ⎥
⎢ ⎥ ⎪⎢ ⎥

⎫
⎪
⎪

= +⎬
⎢ ⎥ ⎪
⎢ ⎥ ⎪
⎢ ⎥ ⎪⎣ ⎦ ⎭

 

has full colomn rank for 1, 2, ...n =  
e) Matrix 
 

      

1
0

000
00
00

)(

+
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

n
A
E

E
AE

AE

nF  

 
has full row rank for 1, 2, ...n =  

A particular approach to this matter is given by Luen-
berger (1978) [19]. 

This section describes the basic shuffle algorithm used to 
check solvability of the system under consideration.  

Solvability is the property of the matrices E and A only 
while the matrix B plays no role in the simplified version of 
algorithm. The algorithm works by modifying an n x 2n 
array. 

Begin with the array 

E    A 

If the E matrix is nonsingular, the procedure terminates – 
the system under consideration is solvable.  

Otherwise, row operations on the whole array are per-
formed, until it is brought to the new form  

1

20
T A

A  
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where the matrix  T  is of full rank, e.g. the matrix T  pose-
ses  n  columns but less then  n  rows.  

The matrices 1A  and  are parts of the second side 
array after the row operations. 

2A

The matrix 1A  is the same size as the matrix T.  
Next step is to bring the array into form 

1

20
T A

A  

This elementary operation (interchange) is called “shuf-
fle”. 

If the  matrix on the left side of the array is non-
singular, the procedure terminates – the system is solvable.  

nn×

The algorithm continues in this fashion, performing row 
operations in order to create null rows on the left side and 
then shuffling the coresponding rows from the right side to 
the left.  

The algorithm terminates in one of two ways: (1) a point 
where the left half becomes nonsingular is reached, in 
which case the system is sovable, or (2) a point where there 
is zero row all the way across the array is reached, in which 
case the system is not sovable. The algorithm always termi-
nates, one way or another, in most n  steps.  

A numerical example is presented to illustrate the met-
hod proposed****. 

The general type of this algorithm, which includes the 
case when the system under consideration operates in for-
ced regime, can be found in Luenberger (1978) [19] or in 
Debeljković et. al (1998) [11]. 

Preposition 1. If the matrix pair ( E A)λ +  is  regular 
then  

{ }( ) ( )E Aℵ ∩ℵ = 0  (15)

Campbell et.al (1976). 
It should be noted that this condition can not guarantee 

the regularity of the matrix pair ( E A)λ +  for some 
Cλ ∈ . 

Preposition 2. If the matrix pair ( E A)λ +  is regular, 
Cλ ∈ , then 

{ }( )kW E∩ℵ = 0  (16)

Debeljković, Owens (1985) [21], where k  denotes the 
subspace of consistent of initial conditions*****. 

W

Here, as it is the case in Preposition 1, the vice versa ne-
ed not be fulfilled. 

Finally, for the linear discrete descriptive system, given 
in its normal canonical form 

1 1 1 2( 1) ( ) (k A k A+ = +x x x2 )k  (17a)

3 1 4 2( ) ( )A k A k= +0 x x  (17b)

where  and  are the state covectors, the matri-
ces A

1( )kx 2 ( )kx
i, i = 1,…,4 are defined over the field of real numbers 

having dimensions  n1 × n1,   n1 × n2,   n2 × n1,   and n2 × n2, 
respectively, solvability condition yields to 
 
________________________ 
**** See Appendix B. 
***** See the next section 

{ }1 1

1
4 3 2det( )det ( ) 0n nsI A A A sI A A−− − − − ≠  (18a)

or 

{ }2
1

1
4 1 2 4 3( 1) det det ( ) 0n

nA sI A A A A−− − + ≠  (18b)

under the assumption that the matrix A4  is invertibile. 

Consistent initial conditions of linear discrete 
descriptor systems 

In the discrete case, the concept of smoothness is almost 
meaningless, but the idea of consistent initial conditions 
that generate solution sequences  has a 
physical meaning. These initial conditions should be called 
consistent initial conditions. It is obvious that this problem 
is more complex here, in the case of discrete systems, than 
when the continuous systems are treated. This problem will 
be discussed in the sequel.  

( ( ) : 0)k k ≥x

Let us consider the linear regular discrete descriptor 
system, given by its state space repesentation, eq. (10).  

There are a few ways to compute the subspace of initial 
conditions for the linear discrete descriptor system.     

Namely, from condition 

0
ˆ ˆ( )DI EE− =x 0  (19)

that is equivalent to 

ˆ ˆ( )D
qW I EE=ℵ −  (20)

one can determine all vectors x0 which span the subspace Wq.  
The matrix E  is defined with 

1ˆ ( )E E Aλ −= − E  (21)

where the index “D” denotes  Drazin's inversion of any 
matrix******. 

A geometric approach can be used for determining the 
subspace of initial consistent conditions. 

The fundamental geometric tool in the characterization 
of the subspace of consistent initial conditions is the 
subsopace sequence ( 0jW j ≥ )  which can be formed in the 
following way 

0W = R n  (22)

1
1 ( ) ,j jW A E EW−
+ C= −λ λ ∈  (23)

then 

, 0j jW W j= ≥  (24)

j qW =  being the subspace of consistent initial conditions of 
the linear discrete descriptive system under consideration.  

Lemma 1. The subspace sequence {W0, W1, W2, ...}is 
formed so that 

W0 ⊃ W1 ⊃ W2 ⊃ W3 ⊃ (25)
Moreover 

ℵ(A) ⊂ Wj ,    ∀j ≥ 0 (26)

__________ 
****** See Appendix A 



 D.DEBELJKOVIĆ, M.B.JOVANOVIĆ, S.A.MILINKOVIĆ, V.DRAKULIĆ: ON SOME SPECIFIC FEATURES OF LINEAR DISCRETE DESCRIPTIVE SYSTEMS 57 

and there exists an integer k ≥ 0, such that 

Wk+1 = Wk (27)

and hence 

Wk+j = Wk,  ∀j ≥ 1 (28)

If  q* is the smallest integer with this property, then 

Wq  ∩ ℵ(E) = {0} ,    q ≥ q* (29)

provided that (λE – A) is invertible for some scalar Rλ∈ . 
For the sake of brevity, the proof is omitted here and can 

be found in  Owens, Debeljković (1985) [21]. 
Theorem 4. Under the conditions of Lemma 1, 0x  is a 

consistent initial condition for the autonomous system, 
given by eq.(10) if and only if 0 qW ∗∈x . Moreover, 0x  

generates a discrete solution sequence ( ( ) : 0)k k ≥x , such 
that ( ) , za 0qk W k∗∈ ∀x ≥

)

. 
Proof. 
Necessity. To prove necessity, let  be a so-

lution sequence and let  be arbitrary. 
( ( ) : 0)k k ≥x

1j ≥
Clearly 

( ) ( 1)E j A j= −x x  (30)

with 

0( )j W∈x  (31)

and hence 

1( 1)j W− ∈x  (32)

If 

1( )j l W− ∈x  (33)

then 

( ) ( 1E j l A j l− = − −x x  (34)

so that 
1

1( 1) l lj l A EW W−
+− − ∈ =x  (35)

and induction proves that 

(0) jW∈x  (36)

But j is arbitrary, so that  

(0) qW ∗∈x  (37)

for all . 0j ≥
Sufficiency. To prove sufficiency let us adopt the as-

sumption , and note that  0(0)
q

W ∗= ∈x x

q qAW EW∗ ∗∈  (38)

If W  is a basis matrix for qW ∗ , one can write 

AW EW= Λ  (39)

for a square matrix , of dimensions equal to the dimensi-
on of the subspace . 

Λ
qW ∗

Now let us write 0(0) : W=x x z0  and solve equation 

0( 1) ( ), (0)k kΛ+ =z z z = z  (40)

The vector function 

( ) ( ) , 0
q

k W k W k∗= ∈ ≥x z  (41)

is real, analytic  and satisfies the initial condition 0(0) =x x .  
It is in fact the uniqe solution of eq.(10), since 

( 1) ( ) ( 1) ( )
( ( 1) ( ))

E k A k EW k AW k
EW k kΛ

+ − = + −
= + − =

x x z z
z z 0

1

 (42)

which ends the proof of sufficiency. 

Linear discrete descriptor system state space 
response 

Free operating regime 
Theorem 5. Let eq. (10) be tractable. 
Then the general solution of the autonomous system, gi-

ven by eq. (10), with B = 0 is determined by 

0

0

ˆ ˆ ,       if  0 
( )

ˆˆ( ) ,   if   k

D

D k

EE k
k

E A

⎧ =
⎪= ⎨
⎪ ≥⎩

x
x

x
 (43)

where 

1 1ˆˆ ( ) ,   ( )   
det( ) 0

E zE A E A zE A A
z zE A

− −= − = −
∃ ∋ − ≠

 (44)

The vector  ∈  is a vector of initial consistent 
conditions for the given homogenous equation if and only if 
it satisfies 

0x nR

0 0
ˆ ˆ DEE=x x  (45)

or, in equivalent notation 

0
ˆ ˆ ˆ( ) ( )p DE EE∈ℜ =ℜx  (46)

so the solution of the autonomous eq.(10), incorporating the 
before mentioned vector of initial consistent condition, is 
given with 

ˆˆ ˆ ˆ( ) ( ) (0) ',   1D k Dk E A EE k= ∀ ≥x x  (47)

Proof. Rigorous proof of this Theorem needs basic reca-
pitulation of some previous results. 

Using eq.(44), the basic system is transformed to 

ˆ ( 1) ( )E k A k+ =x x  (48)

and using the linear nonsingular transformation of the state 
vector 

( ) ( ),    det 0k T k T= ≠x y  (49)

eq.(49) is reduced to  

1 1 ˆˆ ( 1) (T ET k T AT k− −+ = )y y  (50)
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or to 

10

2

10

2

ˆ ( 1)0
( 1)0

ˆ ( )0
ˆ ( )0

kQ
kN

kzQ I
kzN I

⎡ ⎤ +⎡ ⎤
=⎢ ⎥ ⎢ ⎥+⎣ ⎦⎣ ⎦

⎡ ⎤− ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥

− ⎣ ⎦⎢ ⎥⎣ ⎦

y
y

y
y

 (51)

since it is obvious that 

1 0 0
ˆ ˆ0ˆ ˆ,   
0 0

Q QT ET E T T
N N

− ⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

10 −

N

 (52)

0det 0,   0,   ( )Q N Indν ν≠ = =  (53)

ˆ ˆA zE I= −  (54)

1 1

0

ˆ ˆ( )
ˆ 0

ˆ0

T AT T zE I T

zQ I

zN I

− −= −

⎡ −
= ⎢ ⎥

−⎢ ⎥⎣ ⎦

⎤  (55)

0 1
ˆ 0ˆ ˆ( )

ˆ0

zQ I
A zE I T T

zN I
−

⎡ ⎤−
= − = ⎢

−⎢ ⎥⎣ ⎦
⎥

 

1

 (56)

as well as facts that 

10

1
10

ˆ 0ˆ
0

ˆ 0ˆ
0 0

D T

QE T T   
N

QE E T

−

−
−

⎡ ⎤
= ⇒⎢ ⎥

⎣ ⎦

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

 (57)

The solution of eq. (51) is given by 

( )1
1 0 0

ˆ ˆ( ) ( )
k

k Q zQ I−= −y d  (58)

1
2

2
( ) 0,   const.k ⎡ ⎤= = =⎢ ⎥⎣ ⎦

dy d d  (59)

Eqs.(58) and (59) can be shown as a matrix representati-
on, so after returning to the primary state variable, one can 
get 

( )

( )

1
0 0

1 1
1 1 10 0

2

ˆ ˆ( ) 0( ) ( )
0 0

ˆ ˆ 0( ) 0
0 00 0

ˆˆ( )

k

k

D k

Q zQ Ik T k T

IQ T T zQ IT T T

E A T

−

− −
− −

⎡ ⎤−= = ⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤− ⎡ ⎤ ⎡= ⋅⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣⎢ ⎥⎣ ⎦
= ⋅

x y d

d
d

d

T T ⎤⋅ ⎥⎦

(60)

Eqs.(55) and (57) have been used in forming the last 
expression. 

Since the vector d, in eqs.(58) and (59), has been chosen 
arbitrarily, the vector d should be chosen from the subspace 
of initial consistent condition for the final solution.  

Then 

1
0 0

2

DT T EE
⎡ ⎤

= = =⎢ ⎥
⎣ ⎦

d
x d x

d
 (61)

which together with eq. (60) finally leads to eq.(43). 

Forced operating regime 
Let us consider the linear discrete descriptor system, 

operating in forced regime 

( 1) ( ) ( )E k A k k+ = +x x u  (62)

The absence of the matrix B  is not crucial for this dis-
cussion.  

Let us also introduce the following notations 
1ˆ ( ) ( ) ( ),   ( )k zE A k p Ind E−= − =u u  (63)

Theorem 6. Let us suppose that eq.(63) is tractable.  
The solution of eq.(62), for , is given by 1k ≥

hom

0
1

1

0
1

0

( ) ( ) ( )
ˆˆ ˆ ˆ( )

ˆˆ ˆ ˆ( ) ( )

ˆ ˆˆ ˆ ˆ ˆ( ) ( ) (

part
D k D

k
D D k i

i
p

D D i D

i

k k k
E A EE

E E A k

)I EE EA A k i

−
− −

=
−

=

= +
=

+

− − +

∑

∑

x x x
x

u

u

 (64)

It can be shown, that this solution is independent of cho-
ice z.  

Let 

( ) ( )
1

0

ˆ ˆˆ ˆ ˆˆ ˆ ( )
ip

D D D

i
I EE EA A i

−

=

= − − ∑w u  (65)

The vector of initial state is consistent, if and only if 

0
ˆˆ ( )kE⎡ ⎤∈ + ℜ⎣ ⎦x w  (66)

As seen, the vector initial consistent conditions need not 
be the same for the system operating in free and forced re-
gime. We have the same situation when the continuous sin-
gular systems are treated. 

Proof. It is enough to show that particular solution has 
the same form as it is given by eq.(64).  

So, let us suppose that 

( )
11

1
0

ˆˆ ˆ ˆ( ) ( )
k ik

D D

i

k E E A k
− −−

=

= ∑x u  (67)

( ) ( )
1

2
0

ˆ ˆˆ ˆ ˆ ˆ( ) ( )
ip

D D D

i
k I EE EA A k

−

=

i= − − +∑x u  (68)

We need to show that 

1 1
ˆˆ ˆ ˆ( 1) ( ) ( )DE k A k EE k+ = +x x ˆ u

ˆ )u

=

 (69)

2 2
ˆˆ ˆ ˆ( 1) ( ) ( ) (DE k A k I EE k+ = + −x x  (70)

In the case of eq.(69) one can start from expression 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )
( )

1
0

1

0
1 1 1

0
1 1

0

1

1

ˆˆ ˆ ˆ ˆ ˆ1

ˆ ˆˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆˆ ˆ

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆˆ ˆ

ˆˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ

k k i
D D

i
k k i

D D D

i
k k iD D D D D

i
k k iD D D D

i
D D

E k E E E A i

EE E A E A i

EE E A E A i E A E A k

EE E A E A i EE k

EE A k EE k
A k EE

−

=

− −

=
− − − −

=
− − −

=

⎛ ⎞+ = =⎜ ⎟
⎝ ⎠

⎛ ⎞= − =⎜ ⎟
⎝ ⎠
⎛ ⎞= − +⎜ ⎟
⎝ ⎠

= +

= + =
= +

∑

∑

∑

∑

x u

u

u u

u u

x u
x ( )ˆD ku

(71)
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which ends the proof in the first case. 
In the case of eq.(70) one can start from expression 

1

2
0

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ( 1) ( ) ( ) ( 1
p

D D i D

i

E k I EE EA EA k i
−

=

+ = − − + +∑x )u

)

)

 

1
1

0

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) (
p

D D D i D

i
I EE AA EA EA k i

−
−

=

= − − +∑ u                          
1

0

ˆ ˆ ˆˆ ˆ ˆ ˆ( ) ( ) (
p

D D i D

i
I EE A EA A k i

−

=

= − − +∑ u   
1

0

0

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ( ) ( ) ( ) ( ) (
p

D D i D D D

i
)I EE A EA A k i EA A k

−

=

⎛
= − − + −⎜

⎝
∑ u u ⎞

⎟
⎠

ˆ

 

2
ˆ ˆˆ ˆ ˆ( ) ( ) ( )D DA k I EE AA k= + −x u  

2
ˆ ˆ ˆ ˆ( ) ( ) ( )DA k I EE k= + −x u

−

)

                                              (72) 

It is interesting to note that the solution, eq.(64), for 
 depends not only on the (n+1) input vectors 

 but also on (p - 1) future vectors  
 which shows possible 

prediction effects in system dynamical behavior and intro-
duce a need for solvability and causality discussion in the 
light of system physical realization*******. 

( )kx
ˆ ˆ ˆ(0),  (1),  ... ( )ku u u
ˆ ˆ ˆ( 1),  ( 2),  ...... ( 1),k k k p+ + +u u u

Linear discrete descriptive transfer function 
matrix  

Let us consider the linear discrete descriptive system 
given by eq.(10) and (11).  

Applying Z - transformation to the before mentioned 
system, one can get  

( ) ( ) (0) (zE A z zE B z− = +X X U  (73)

( ) ( )i z C z=X X  (74)

where X(z),  U(z) i  are corresponding Laplace tran-
sforms. 

( )i zX

Under the assumption that system given by eqs.(10) and 
(11) is regular, from eqs.(73) and (74), under the null con-
ditions, one can get  

( ) ( )
( )

1( )
det
adj zE A

W z C zE A B C B
zE A

− −
= − =

−
 (75)

the linear discrete descriptive transfer function matrix, with 
associate characteristic equation, as follows  

( ) det( )Ef z zE A= −  (76)

It is well known that irregular discrete descriptor 
systems do not posses the transfer matrix function, but this 
still does not mean that they do not have dynamical behavior.  

Then, this behavior is described in the form of input – 
output relations 

( ) ( ) ( ) ( )R z z Q z z=X U  (77)

R(z) and Q(z) being polynomials over the complex num-
bers.  

 

More facts concerning this class of system can be found 
in the papers of Dziurla, Newcomb (1987) [14] and Dai 
(1989a) [7]. 

It is well known that the transfer matrix function for the 
linear discrete descriptor system is not, in general, strictly 
proper.   

In general case, the transfer matrix function can be rep-
resented with two addends. The first addend is usually pro-
per and the second one corresponds to a polynomial in z.   

On the other side, it is very well known from the general 
control theory that for the particular choice of the transfer 
matrix function there are numerous state space mathemati-
cal model representations, so that all quadrells  
are connected with the basic system representation through 
the nonsingular transformation matrix T in the following 
manner 

( , , , )E A B C

1

1

E TET B TB
1A TAT C CT

−

− −

= =

= =
 (78)

Moreover, they have the same matrix transfer function.  
It is clear that for particular quadrell (  there is 

a unique transfer function matrix. 
, , , )E A B C

Some features of the transfer matrix function and some 
important questions concerning the dynamics of linear disc-
rete descriptor systems will be discussed in the sequel. 

The regular matrix pair theory shows that there are 
always two nonsingular matrices U and V, such that 

0( )
0

r

n r

zI AU zE A V
I zN−

−⎡ ⎤= − = ⎢ ⎥−⎣ ⎦
Κ  (79)

where N is a nilpotent matrix with the nilpotency index:  

det( )

Ind N

r degree zE A

ν =

= −
 (80)

r denotes the degree of the system characteristic 
polynomial. 

Moreover, the matrix N possesses a special Jordan struc-
ture with all null elements on the first diagonal.  

The matrix Κ is known as a Kronecker matrix pair (E,A) 
form. 

On the other side, system given by eqs.(10) and (11) can 
be rewritten as 

( ) ( )
0 ( ) ( )i

zE A B z zE z
C z
− −

z
⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

X X
U X  (81)

with the coefficient matrix known under the name system 
matrix.  

System, given by eq. (81) is strictly system equivalent to 
the system having the following system matrix 

0 0
0 0 0

( )
0

U zE A B V
I C I

U zE A V UB
CV

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

− −⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 (82)

Substituting eq.(79) into eq.(82) and using the following 
transformation __________ 

********This cannot be found in continuous case. 
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11

2

( )( ) ( )( )
zz Vz

−⎡ ⎤= =⎢ ⎥⎣ ⎦
XX X zX  (83)

one can get' limitedly, a system equivalent to the system gi-
ven by eq. (81) 

1 1

2 2

1 2

1

2

0 (
0

0 ( )

( )
( )

( )

r

n r

i

zI A B z
I zN B z

C C z

z z
zN z

z

−

⎡ ⎤− − ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

X
X
U

X
X

X

)
( ) =

 (84)

where 

[ ]1 2

1

2

,C CV C C
BB UB B

= =
⎡ ⎤= = ⎢ ⎥⎣ ⎦

 (85)

If one applies inverse Z transformation to eq.(82), the 
new result follows 

1 1 1( 1) A ( ) ( )k k B+ = +x x ku

)u

 (86)

2 2 2( 1) ( ) (N k I k B k+ = +x x  (87)

[ ] 1
1 2

2

( )( ) ( )i
kk C C k

⎡ ⎤= ⎢ ⎥⎣ ⎦
xx x  (88)

The system given by eq.(86) corresponds to the strictly 
proper part of the transfer matrix function and is of the 
form, Christodolou, Mertzios (1985) [4]: 

( )1

1

1( ) nW z C zI A B
−

= −  (89)

and the system given by eq.(87) corresponds to the 
polynomial part of the form 

( )2

1

2 2( ) nP z C zN I B
−

= −  (90)

so the transfer matrix function can be represented in the 
following form 

( ) ( ) ( )W z W z P z= +  (91)

It is obvious that ( )W z  corresponds to the slow part of 
the system and the polynomial P(z) to the fast part of the 
system under consideration, Debeljković et. al (1996.a, 
1998, 2004.a, 2004.b) [9,11,12,13]. 

Let us remember that the transfer matrix function is 
strictly proper if the following condition is satisfied 

lim ( ) 0
s

W s
→∞

→  (92)

Practical computation of the transfer matrix function is 
not based on using eq.(75).      

The computational procedures are based on the series 
expansion of the resolvent matrix  .  1( )zE A −−

For example the very well known Sourian-Frame-Fad-
dev algoritam can be used.  

Linear discrete descriptive fundamental matrix  
A dynamical analysis of normal systems given in their 

classical representations (state and output equation) can be 
performed in the free operating regime if the system matrix 
A  is known. 

On the other side, it is very well known that equivalent 
analysis cannot be performed for discrete descriptive 
systems, since the system matrices E and A have to be sub-
jected to some complex numerical operations such as fin-
ding Drazin inverse or transforming to the adequate, 
Weierstras form, or some other approaches which certainly 
can lead to the forms that are more applicable for different 
points of view and other dynamical analysis necessities.  

However, it has been shown recently that some aspects 
of dynamic analysis of linear discrete descriptor systems 
can be performed using the basic system matrices E and A 
if one can define the system fundamental matrix.  

Let us consider the regular linear discrete descriptive 
system, given by eqs.(10) and (11).  

The discrete time interval is such that 
(0, ), and ( ) 0

0, 1, , 1
k N k

k N
∈ ≠

∀ = −
u

…
 

Laurent expansion for the regular resolvent matrix for-
med of the matrix pair (E, A), Rose (1978) [22], about 
infinity, is given by 

1 1( ) i
i

i
zE A z z

µ
ϕ

∞
− − −

=−

− = ∑  (93)

µ being the nilpotency index of the resolvent matrix 
1(zE A)−− , and sequence iϕ  which should be determined, 

is known under the expression “forward fundamental 
matrix“. 

Laurent expansion of resolvent matrix about zero 
vicinity is: 

1( ) i
i

i
zE A z

ρ
ψ

∞
−

−
=−

− = ∑  (94)

ρ being the nilpotency index of the resolvent matrix 
1(zE A)−− , and sequence iψ , which is known, is known 

under the expression “backward fundamental matrix“. 
When “normal” systems are treated we have E = I so  

0 0, i
i ifor i and A for i 0ϕ = < ϕ = ≥ . If E=I and 

det 0A ≠  then 0 0, i
i i 0for i and A for i−ψ = > ψ = − ≤ . 

The relative fundamental matrix of the linear discrete de-
scriptor system which, having in mind its nature and struc-
ture, may be called the fundamental sequence  is very im-
portant from the dynamic analyzing point of view. 

Some of these questions are of particular significance: 
– Determination of the system state space rsponse  
– Determination of the resolvent matrix 
– Determination of controllable and observable forms of 

corresponding matrices  
– Determination of the semi-state transition matrix 
– Determination of Hankel`s matrix, Markov`s paremeters 

and Tschirnhausn`s polynomials. 
For more informations one can use the original papers of 

Rose (1978) [22], Lewis  (1986) [16], Mertzios, Lewis 
(1989) [4] or   Debeljković et. al (1998, 2004.b) [11,13].  
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Conclusion 
Some specific features of linear discrete descriptor 

systems have been presented and analyzed in the light of 
possible dynamical treatment of such a class of systems. In 
that sense, some questions of existence and uniqueness are 
discussed throughout the concepts of solvability, causality 
and conditionability. The initial consistent conditions that 
generate the state space sequence ( (  are also di-
scussed. The state space response of this system is also gi-
ven both for free and forced operating regimes. The transfer 
matrix function and the fundamental matrix of linear discre-
te descriptor systems have been defined and analyzed. 

) : 0)k k ≥x

    A numerical example has been performed to show a 
detailed procedure in the investigation of these specific 
features of the system under consideration. The direct 
comparison is performed towards the normal systems, 
which do not obey in this manner. 

Appendix A  -  Usual notations 
Drazin matrix inversion  

Given n x n matrix F, then DF  is the unique solution of 
the following matrix equations 

D DFF F F=  
D DF FF F=  

1D k kF F F+ =  

(A1)

k being the index of the matrix F, denoted with k = Ind (F), 
defined as the smallest  integer such that the following con-
dition is satisfied  

1j jrank F F+ =  (A2)

ℵ(F) and ℜ(F) denote kernell or the null F space of the 
matrix and the range of the matrix F, respectively, e.g.: 

ℵ(F) = {x: Fx = 0, ∀ x∈ } nR (A3)

ℜ(F) = {y∈ , y =Fx,  x∈ } nR nR (A4)

with 

dim ℵ(F) + dim ℜ(F) = n (A5)

Appendix B – Numerical example showing the 
application procedure of shuffle algorithm 

It is necessary to test the solvability of the matrix pair ( 
E, A ) using the “shuffle”  algorithm: 

1 0 1
0 1 0
0 1 0

E
⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

         
0 0 1
1 0 0
0 1 0

A
⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

Starting with the E, A array below, the shuffle algorithm 
progresses as indicated 

                          E                            A 

                                     
1 0 0
0 1 0
0 1 0

0 0 1
1 0 0
0 1 0

Row operations yield 

                                       
1 0 0
0 1 0
0 0 0

0 0 1
1 0 0
1 1 0−

A "shuffle” yields 

                                        
1 0 0
0 1 0
1 1 0−

0 0 1
1 0 0
0 0 0

More row operations yield 

                                       
1 0 0
0 1 0
0 0 0

0 0 1
1 0 0
1 0 1−

An easy way to see if the shuffle algorithm checks for 
solvability is to consider the determinant of ( )sE A− .      

According to the given results, solvability is equivalent 
to the condition that this determinant does not vanish 
identically. 

Row operations on ( )sE A−  mostly influence the de-
terminant by a nonzero multiplicative constant. Thus, one 
may well check the determinant when E has a special form 
obtained by the first step of algorithm. The shuffle of 2  
over the other side of array is equivalent to the multiplicati-
on of the lower rows by 

A

)( λ− , and each of those multipli-
cations multiplies the determinant by )( λ− . Thus, it is 
clear that the shuffle algorithm is equivalent to the tran-
sformations of the original matrix pencil to a new pencil 
whose determinant is original determinant multiplied by a 
nonzero constant and  where b is the total number 
of rows shuffled. If a point where an entire row is zero is 
reached, the determinant is zero. If the point where the 
(new) determinant of E is nonsingular is reached, the de-
terminant is then considered to be nonzero.  

)( bλ−

One of these two situations must arise within n steps, for 
every shuffle increases the degree of the determinant of the 
(modify) matrix pencil by one, and  the maximum possible 
degree is n. 

Finally, new shuffle yields 

                                      
1 0 0
0 1 0
1 1 0−

0 0 1
1 0 0
0 0 0

The algorithm terminates because the left side is nonsin-
gular. Thus the system under consideration is solvable and 
the matrix pair (E, A ) is regular. 

Appendix C - Performing the dynamical analysis of 
linear discrete descriptor system 

Let us consider the system 

( 1) (E k A k)+ =x x  

where 

1 0 0
0 3 3 3 3
0 0 0

E
⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

, 
1 3 3 3 3

3 0 0
0 3 3 3

A
⎡ ⎤−
⎢ ⎥= −⎢ ⎥
⎢ ⎥− −⎣ ⎦3
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System is solvable, since 
2det( ) 2 3 2 3 3 0zE A z− = − ≠  

Necessary matrices are given by 

     { } { }

0 3
ˆ

ˆ

3 3
ˆ 2

2

D

          -1 3      1

E - 3 2      0       0   

 3 2       0       0

 E 0, 0.7598, -0.7598  

 

0   - 3    3
 E -3      0        0

3        0        0

σ

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

=

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

 

The subspace of the consistent of initial conditions Wq 
can be determined in the following way.   

For z = 0 the matrix pair (E, A) is regular, so it can be 
found that  

1       0       0
ˆ ˆ 0     1 2     -1 2

0    -1 2      1 2
DEE

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

 

and finally 

( )
1

0

3

1       0       0
ˆ ˆ 0      1 2     1 2 0

0      1 2     1 2

D

x
I EE x

x

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥− = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

x 2 =  

e.g.  
       2 3

The state space response can be determined in the 
following way, upon Theorem 5. Since for z = 0 the matrix 
(zE - A) possesses its inverse matrix, one can have 

0x x+ =

 
( ) ( )1 1

3
ˆˆ ,     

    0        3 3      - 3 3
ˆˆ ˆ    3 2           0              0

 -3 2          0              0

D D

E zE A E A zE A A I

E A E

− −= − = − = −

⎡
⎢

= − = ⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

x

 

so 

0 0
ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( )D k D D kk E A EE E A= =x x  

for 
0 ,   0qW k∈ ∀ ≥x  

and finally 
 

01

02

03

  0       3 3    - 3 3
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the phase trajectories of the system under consideration is 
dispatched in Fig.C1. 

In order to see the main character of the system time res-
ponse more clearly, the values of state variables are connec-
ted in discrete sampling moments.  
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Figure C1 
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O nekim specifičnim osobinama linearnih diskretnih deskriptivnih sistema 
Diskretni deskriptivni sistemi predstavljeni su u matematičkom smislu kombinacijom diferencnih i algebarskih jednačina, pri 
čemu ove druge predstavljaju ograničenje koje opšte rešenje mora da zadovolji u svakom trenutku. Za osnovnu dinamičku ana-
lizu ove klase sistema u vremenskom domenu, potrebno je dobro poznavanje njihovih suštinskih osobina po pitanju postojanja i 
jedinstvenosti rešenja, konzistentnih početnih uslova i kretanja u prostoru stanja. Neka od ovih pitanja, koja sadrže niz specifi-
čnosti koje se ne pojavljuju kod tzv. normalnih sistema, biće predmet detaljnih razmatranja u ovom radu. Nekoliko odabranih 
primera ilustruje prezentovane rezultate.  

Ključne reči: linearni sistemi, deskriptivni sistemi, postojanje i jedinstvenost rešenja, konzistentni početni uslovi, fundamentalna 
matrica deskriptivnog sistema. 

Sur quelques caractéristiques spécifiques des systèmes linéaires discrets et 
descriptifs 

Les systèmes linéaires discrets et descriptifs sont présentés, mathématiquement, comme la combinaison des équations 
algébriques et celles de différence. Les équations algébriques sont la contrainte pour la solution génerale qui doit la satisfaire à 
chaque moment. Pour ľanalyse dynamique fondamentale de cette classe de systèmes dans ľintervalle de temps fini, il est 
nécessaire de bien connâitre leurs caractéristiques concernant ľexistence et la singularité de la solution, les conditions initialles 
consistantes et le mouvement dans ľespace ďétat. Quelques unes de cettes questions, avec leurs caractéristiques spécifiques qui 
n'existent pas chez les systèmes dits normaux, sont traitées en détail. Les résultats sont illustrés par quelques exemples 
numériques choisis.  

Mots-clés: systèmes linéaires, systèmes descriptifs, existence et singularité de la solution, conditions initialles consistantes, 
matrice fondamentale du système descriptif. 
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