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Descriptor state space systems are those the dynamics of which is governed by a mixture of  algebraic and differential
equations, so it is impossible to represent them in the classical form of so-called normal state space representations. In
that sense the algebraic equations represent the constraints to the solution of the differential part. A basic dynamic
analysis of these systems means the examination of their stability in the sense of Lyapunov, as well as in the sense of
finite time and practical stability. Moreover, the aspect of developing explicit upper boundaries for the perturbation
of such a class of systems, so that the perturbed system remains stable, has received much attention recently and is the
subject of herein discussions. This significant concept is usually denoted as the concept of robustnees.
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Introduction
ESCRIPTOR state space systems are those the dyna-
mics of which is governed by a mixture of algebraic

and differential equations, so it is impossible to represent
them in the classical form of so-called normal state space
representations. In that sense the algebraic equations
represent the constraints to the solution of the differential
part.

The complex nature of this class of systems causes many
difficulties in their analitycal and numerical treatment that do
not appear in normal systems. In that sense, the questions of
particular importance are: the existence and uniqueness of
solutions, consistent initial conditions and the determination
of fundamental matrix.

The survey of updated results in this area and a broad
bibliograph can be found in the following references: Bajić
(1992) [1], Campbell (1980, 1982) [7,8], Lewis (1986,
1987), [25,26] Debeljković at el. (1996a, 1996b, 1998),
[14,15,16] Mertzios (1987) [27], and in two special issues
of the Journal Circuit, Systems and Signal Proceesing
[9,10].

As it was underlined before, examples of descriptor
systems are numerous in different technical areas. In that
sense, the paper of Stevens (1984) [33] is dedicated to
mathematical modelling and missile dynamics simulation.
It has been shown that the descriptor model is the direct
consequence of structural limitations and military purposes
of the considered missile.

In the control and system theory, it is of great importan-
ce to preserve various system properties under large pertur-
bations of the system model. Such perturbations of the
system model may be caused by changes in the manufactu-

ring process of components, variations of constructive ele-
ments, or changes of environmental conditions. The insen-
sitiveness of system properties is called robustness and it is
an important field of investigation. The fact is that in many
practical situations the parameters of system components
are not known exactly. Usually, we only have some infor-
mation on the intervals to which they belong.

Therefore, the robustness for any system property is an
important theoretical and practical question.

In recent years, a considerable attention has been focu-
sed on the design of controllers for multivariable linear
systems so that certain system properties are preserved un-
der various classes of perturbations occurring in the system.
Such controllers are called robust controllers, and the re-
sulting system is said to be robust in some context.

Dynamic system behavior in the presence of small per-
turbations is treated within the sensitive theory. The theory
of robustness is related to the cases when perturbations are
rather significant.

For contemporary control systems, it is of particular im-
portance to preserve not only the stability characteristics,
but also the performances such as: controllability, obser-
vability, identificabilty etc. Therefore, the robustness can be
assigned to any system feature.

Robustness, besides its theoretical significance has a
very impressive practical meaning, since in many cases the
exact values of system parameter components are not
known very well, although some boundness properties of
system responses may be estimated.

Roughly speaking, some definitions of robustness are
essentially based on the predefined boundaries for the per-
turbation of initial conditions and the allowable perturbati-
on of the system response. In the engineering applications
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of control systems, this fact becomes very important and
sometimes crucial, for the purpose of characterizing in ad-
vance, in quantitative manner, possible deviations of the
system response.

Thus, the analysis of these particular boundness proper-
ties of solutions is an important step, which precedes the
design of control signals in all cases.

There are significant differences in applying this concept
towards single input - single output systems (SISO) in
comparison with multi input - multi output systems
(MIMO). More detailed information regarding this problem
can be found in the cited references.

Preliminary considerations
Let us consider linear, discrete, autonomous descriptive

systems

0 0 0 0( 1) ( ) , ( , 1, ) ( )E k A k k k k k+ = = + =y y y y… (1)

1 1 1 2 2( 1) ( ) ( )k A k A k+ = +x x x (2a)

3 1 4 2( ) ( )A k A k= +0 x x (2b)

and nonautonomous, given with
* *

0 0( 1) ( ) ( ), ( )E k A k k k+ = + =x x u x x (3)

defined on the discrete time interval: K={k∈N:
:k0≤k<k0+kkon}, where quantity konk  may be either a positi-
ve real number or the symbol +∞, so that finite time
stability and practical stability can be treated
simultaneously. It is obvious that K ∈ R, and k0 < kkon.

In eq.(1), y(k)∈Rn is the descriptor state vector with mat-
rices E, A∈Rn×n, the matrix E being singular obligatorily.

In eq.(2a-2b), 1
1( ) nk ∈x R  and 2

2 ( ) nk ∈x R  are co-vec-
tors and matrices Ai, i=1,…,4 are defined over the field of
real numbers, having the following dimensions: n1×n1,
n1×n2, n2×n1, and n2 × n2, respectively.

As the system under consideration is time invariant, it is
sufficient to consider solutions x only as the functions of
current discrete moment k and the initial state vector y0 or
x0 in the moment k0, which is completely fixed, so one can
write x(k,x0) or in the shortened notation x(k). Moreover, y0
are x0 vectors belonging to the subspace of consistent initial
conditions, denoted by Wq, Debeljković et al. (1998) [16],
which generate discrete solution sequences (y(k) or x(k):
:k≥0).

Let us denote the set of consistent initial conditions of
eqs.(2a–2b) by ϕI . Also, let us consider the manifold M∈Rn

determined by eq.(2b) as

3 1 4 2{ ( ) : ( ) ( )}nk A k A k= ∈ = +x R 0 x xM (4)

For the system given by eqs.(2a–2b), the set ϕI of consis-
tent initial conditions is equal to the manifold M, but in gene-
ral case one can write ϕI ⊆ M, or in other words a vector of
consistent initial conditions x0=[ 10 20

T Tx x ]T has to satisfy

A3x10+A4x20=0 (5)

or in equivalent notation

x0 ∈ ϕI ⊆ M ≡ ℵ([A3  A4]) (6)

But if it can be proved that the rank condition, given with

rank [A3   A4] = rank A4 (7)

is satisfied, then it is obvious that, Bajić (1995) [13], ϕI =
=M = ℵ([A3  A4]) and the determination of ϕI requires no
additional computation except those necessary to convert
eq.(1) into the canonical form, given in eq.(2).

The time invariant sets, S(⋅) used as the bounds of system
trajectories, are assumed to be open, connected and boun-
ded.

In general, one may write

{ }2( ) : || ( ) || , ( ) \{ }n
G qS k k k Wρ ρ= ∈ < ∀ ∈x R x x 0 (8)

or
2( ) { ( ) : || ( ) || }n

G GS k kρ ρ= ∈ <x R x (9)

or
2( ) { ( ) : || ( ) || } , 1, 2...n

l lS k k lρ ρ= ∈ < =x R x (10)

where G is a real, symmetric semidefinite matrix and Wq
the subset of consistent initial conditions.

A survey of basic results
The results derived in the context of stability robustness

are usually based on some previous, basic results in the area
of system stabilization problems. Therefore, in the sequal,
some of these basic results are presented to make some new
results more clear and comprehensive whether we treat
regular or irregular discrete descriptive systems. It means it
is not necessary that the following equation is valid

det(zE-A)≠0,    z∈C (11)

for the system given with eq.(1). 
Thus, the regularity condition for eq.(3) is given with

( ) ( )( )1
1 4 3 1 2det det 0cI A A A cI A A−− − − − ≠ (12)

or with

( )( )1
4 1 2 4 3det det 0A cI A A A A−− − ≠ (13)

on condition that matrix A4 is nonsingular.
In the first part of the paper, the conditions which

guarantee the feature of attraction property for all or only
one subset of the systems solutions, are presented. The
analysis of the attraction property of the phase origin for
discrete descriptive systems is an important step preceding
the design of control. The attraction property of the origin is
examined through the asymptotic stability analysis [ ]31 ,
where the necessary and sufficient conditions for the
asymptotic stability of discrete descriptor systems were
established. However, the feasible method for testing these
conditions has not been derived yet.

Moreover, since only the regular discrete descriptive
systems were treated, [ ]31  it represents serious limitations.

In this paper we examine the existence problem of
solutions convergent to the origin of the system phase space
for irregular discrete descriptor systems. By a suitable
nonsingular linear transformation, the original system is
transformed into a convenient canonical form. This form of
equations enables development and easy application of
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Lyapunov’s direct method for the intended existence
analysis of the subclasses of solutions. In this case, when
the existence of such solutions is established, the estimation
of weak domain attraction of the origin is obtained on the
basis of symmetric, positively definite solutions of the
reduced order discrete Lyapunov matrix equation. The
estimated weak domain of attraction consists of points of
the phase space which generate at least one solution
covergent to the origin.

Since the linear transformation, given by eqs.(1) to (3), is
nonsingular, the convergence of solutions y(k) of eq.(1) and
x(k) of eq.(2) is an equivalent problem.

The potential (weak) domain of attraction, for the null
solution of eq.(2), x(k,0)=0 (k∈K), is defined by

{ 0

0 0

: ( ( ) : 0,1, 2,...)
(2 2 )

(0) , lim || ( , ) || }

I

t

k k
which satisfies a b

t x

ϕ

→∞

∈ ∃ =

−
∋ = →

D x x

x x x 0

�

(14)

Debeljković et al. (1998.a) [14].
We use term weak because the solutions of eq.(2) need

not be unique and thus for x0∈D there also may exist solu-
tions nonconvergent to the origin. In our case D=M=ϕI  and
we may think of the weak domain of attraction as of the
weak global domain.

This fact forced us to estimate the set De of the set
D(De⊆D).

We will use Lyapunov’s direct method to obtain the es-
timation De of the set D. Our development will not require
the regularity condition, eq.(11), neither eqs.(12-13), so the
treatment of both regular and irregular discrete descriptor
systems will be methodologically unique.

Let us first assume that the rank condition, eq.(7), is ful-
filled, so the immediate consequence that ϕI =ℵ([A3 A4]) is
completely acceptable for the system given by eqs.(2a–2b).

Then, there is the matrix L being any solution of the
matrix equation

0=A3+A4L (15)

where 0 is the null matrix of the same dimensions as
matrix A3.

On the basis of eqs.(7) and (15) it becomes evident that
whenever the solution x(k) fulfills

( ) ( )2 1 , Kk L k k= ∈x x (16)

it has also to fulfill eq.(2).
Having in mind that the rank condition is satisfied,

eq.(7), it follows directly that ℵ([L–In2])⊆ ℵ([A3 A4]). To
prove this fact, let us adopt an arbitrary x* such that
x*∈ℵ([L–In2]), i.e. x2*=Lx1*, where L is the matrix being
any solution of eq.(15). Multiplying equation (15), from the
right side, by vector x1*, using also eq.(16), it is easy to
show that

* * * *
3 1 4 1 3 1 4 2A A L A A= + = +0 x x x x (17a)

which proves the fact that: x*∈ℵ([A3  A4]).
So it follows

ℵ([L –In2])⊆ℵ([A3  A4]) (17b)

Consequently, those solutions of the system given with
eqs.(2a–2b) which satisfy eq.(7), have also to satisfy the
constraints imposed by eq.(2b).

For all solutions of the system given with eqs.(2a–2b),

for which eq.(16) is valid, the following conclusions are
extremely important:
1. The solutions of eqs.(2a–2b) have to belong to the set

x(k,x0)∈ℵ([L   –In2]) (18)

2. If the rank condition, eq.(7), is satisfied, and there exist
solutions x(k) of the system given by eqs.(2a–2b), for
which it is not dificult to show that possesses the attrac-
tion property to the origin of phase space, and we may
say that they form the so-called potential (weak) domain
of attraction, emanating from it and given with

De=ℵ([L   –In2])}⊆D (19)

For the system given with eqs.(2a–2b), the Lyapunov–li-
ke function can be selected as

( ) 1 1( ) ( ) ( )TV k k H k=x x x (20)

where H is a real, symmetric, positive definite matrix.
The forward difference of V(⋅) along the trajectories of

the system, eqs.(2a–2b), is given with

( ) ( ) ( )
1 1 1 1

( ) ( 1) ( )

( 1) ( 1) ( ) ( )T T

V k V k V k

k H k k H k

∆ = + −

= + + −

x x x

x x x x
(21)

and by using eqs.(2a) and (16), one can get

( ) ( )1 1 2 1 2 1

1 1

( ) ( ) ( ) ( ) ( )

( ) ( )

T T

T

V k k A A L H A A H k

k Z k

∆ = + + −

= −

x x x

x x
(22)

where

1 2 1 2( ) ( )TZ A A L H A A L H= − + + + (23)

is a real, symmetric matrix. Since H is the symmetric, posi-
tive definite matrix, then V(⋅) is a positive definite function
with respect to the co-vector x1(k). Thus, if Z is the positive
definite matrix, then ( ))(kV x  will approach the origin of
phase space, when k→∞, under the assumption that soluti-
ons exist when k→∞.

Necessary connection between the matrices H and Z,
which satisfy imposed demands, can be established through
the discrete matrix Ljapunov equation of the following type

T
L LA HA H Z− = − (24)

where
1 2LA A A L= + (25)

The arbitrary, real, symmetric, positive definite matrix Z
and the symmetric, positive definite matrix H, may be fo-
und as a unique solution of discrete matrix Lyapunov
equation if and only if AL is a discrete stable matrix, i.e. the
matrix with all eigenvalues lying within the unit circle in
the complex z plane. It should be noted that the matrix di-
mension H is n1×n1, so that eq.(24) may be treated as a re-
duced order discrete Lypunov matrix equation  with respect
to the dimension of the initial descriptive system.

Now we are in position to present the following result.
Theorem 1. Let the rank condition (7) be satified. Then,

the estimation De for the weak domain of attraction D of the
null solution for the given discrete descriptive system, is
given with eq.(19), on condition that the matrix L is any
solution of eq.(15), and AL=(A1+A2L) is a discrete stable
(Schur) matrix. Moreover, De is not singleton.
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Proof. For the sake of brevity the proof is here omitted,
and can be found in Debeljković et al. (1998) [16].

The second part of this paper is dedicated to the retros-
pective of results concerning contributions of different aut-
hors in the area of finite and practical stability. To this end,
primarily, we present some useful definitions necessary for
the latter understanding of complex conditions which are
expressed for the better understanding of basic theorems
providing sufficient conditions for the proposed and adop-
ted concept of stability.

Stability definitions
Definition 1. System (1) is practically stable w.r.t.

{K,α,β,G} if and only if there exists y0∈Wq, which satisfies
the following condition

2
0|| ||G α<y (26)

implying that
2|| ( ) || ,Gk kβ< ∀ ∈y K (27)

Debeljković, Owens (1986) [18], Owens, Debeljković (1986)
[30].

The previous definition is applicable in the frame of only
regular discrete descriptor systems analysis*).

In order to ensure the unique treatment of both regular
and irregular discrete descriptor systems, the following
definitions will be introduced in the sequel, being
completely analogous to those introduced earlier for
continuous linear singular systems, presented in papers of
Bajić (1995) [3], Debeljković et al. (1995) [12,13].

Definition 2. Solutions of the system given in eqs.(2.a–
2.b) are {K,α,β,G} bounded if and only if x0 ∈ ϕI ∩ SG(α)
implying that x(k,x0)∈SG(β) for ∀k∈K.

In the previous definition the matrix G may be used in
any structural form as, for example, it is natural to take it
as: G =ETHE, H being some real symmetric positively defi-
nite matrix such that )()(||)(|| kGkk T

G xxx =  represents a
norm on the subspace of consistent initial conditions Wq.

Having in mind the special rank properties of matrix E,
it is useful to slightly reformulate the previous  definitions
in the following manner.

Definition 3. Solutions of the system given in eqs.(2a–
2b) are {K,α,β1,β2}} bounded if and only if x0 ∈ ϕI

∩S1(α)∩S2(αβ2/β1) implying that x(k, x0)∈S1(β1)∩S2(β2)
for ∀k∈K.

Definitions 1-3 may be treated as a special case of the
so-called generic concept of practical stability, given in the
paper of Bajić (1992b) [2].

Besides the concept of practical stability, it is of parti-
cular significance to discuss the domain of practical
stability, having in mind that discrete descriptive systems,
in general, may possess one or more solutions. It is obvious
that if all solutions emanating from the set ϕI ∩SG(α),
{K,α,β,G} are bounded, then the system under considerati-
on is also {K,α,β,G} practically stable. The previous con-
siderations as well as the following discussions, are mostly
taken from the paper Bajić et al. (1998) [5].

If we recall the question related to the domain of attrac-
tion, it is preferable to use term weak since it is clear that
the solutions of eqs.(1) or (2) need not be unique and every
chosen initial condition y(k0) or x(k0) may not guarantee the
required property in the sense of the adopted concept of
stability. However, it is possible to guarantee that for each
y(k0) or x(k0), taken from a corresponding domain, there
exists at least one solution with a specific practical stability
characterization. We will not prove that all solutions ema-
nating from the concerned points x(k0) possess the required
property.

The potential (weak) domain {K,α,β,G} of practical
stability for the same system is defined in an analogous
manner as follows

( ){ }0 0

0

( ) : ( , ) ,
( ), ( , ) ( )

I G

G

S
k k S

ϕ α
β

∈ ∩ ∃ ⋅=
∀ ∈ ∈

x x x
x x

P K (28)

We can define the potential (weak) domain {K,α,β1,β2}
of practical stability for the same system

( ){ }0 1 2 2 1

0 0 1 1 2 2

( ) ( / )
( , ) ( ) ( , ) ( ) ( )

I S S
k k S S
ϕ α αβ β

β β
∈ ∩ ∩

= ∃ ⋅ ∀ ∈ ∈ ∩
x

x x x xA K (29)

Our task is to estimate the before-mentioned potential
domains. We shall use the Lyapunov direct method to ob-
tain the estimations: Pe ⊆ P and Ae ⊆ A.

It should be pointed out that our development will not
require the regularity condition of the matrix pair (E-A).

Some other aspects or the irregular discrete descriptor
systems were considered in Dziurla, Newcomb (1987) [21]
and Dai (1989) [11].

For all solutions of discrete descriptor systems given
with eqs.(2a–2b) for which eq.(16) is valid the following
conclusions are important:
1. These solutions of eqs.(2a–2b) have to belong to the set:

( )20 0( , ) [ ]nk L I∈ℵ −x x (30)

2. If the rank condition, eq.(7), is satisfied, then there exist
solutions x(k) of the system given by eqs.(2a–2b), which
satisfy eq.(16) and their {K,α,β,G} bondedness is pro-
ved, then the potential domain {K,α,β,G} of practical
stability of the system given with eqs.(2a–2b), may be
estimated as

{ 2( ) : ( ) ( ) ([ ])n
e G nk k S L Iα= ∈ ∈ ∩ℵ − ⊆x R xP P (31)

The last fact will be proved in one of the theorems which
will be presented a little bit later.

For the system given in eqs.(2a–2b), the Lyapunov – like
function candidate can be selected as

( ) 1 1( ) ( ) ( )TV k k H k=x x x (32)

where H is assumed to be a real positive definite matrix, i.e.
H=HT>0

( ) ( ) ( )( ) ( 1) ( )V k V k V k∆ ρ= + −x x x (33)

where ρ∈R, calculated along the solutions of eqs.(2a–2b)

( ) 11 12 21 22

1 1

( )
( ) ( )T

V k
k H k

∆ κ κ κ κ
ρ

= + + +
−

x
x x

(34)

where

__________
*) Definition 1.a System (1) is { }, , ,Gα βK  practically stable if and only

if ( ) ( ) ( )0 0,q G Gy W S k Sα β∈ ∩ ∈y y  for k∀ ∈K.
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( ) ( ), ( , ) 1, 2T T
ij i i j jk A HA x k i jκ = =x (35)

Combining eqs.(16) and (34), one can get

( ) ( )1 1 2 1 2 1

1 1

1 1

( ) ( ) ( ) ( ( )

( ) ( )

( ) ( )

T T

T

T

V k k A A L H A A L k

k H k

k Z k

ρ

∆ = + +

−

=

x x x

x x

x x

(36)

where

1 2 1 1( ) ( )TZ A A L H A A L Hρ= + + − (37)

We should notice that Z is a real symmetric matrix.
Let )(⋅λ  and )(⋅Λ  denote the maximum and the mini-

mum eigenvalue of the real symmetric matrix (⋅).

Stability theorems
Theorem 2. Let the rank condition, eq.(7), be satisfied.

Let H be a real, symmetric, positive definite matrix. If L is
any real matrix that satisfies eq.(15), then the system gover-
ned by eqs.(2a–2b) has solutions which are {K,α,β1,β2} bo-
unded, with α≤β1, if the following conditions are satisfied:
i) The matrix Z defined in eq.(37) is a negative semidefi-

nite matrix

ii) 
1( ) / ( ) ,k H H kρ Λ α λ β⋅ < ∀ ∈K (38)

iii) 2
2 1|| || /L β β≤ (39)

Theorem 3. Let all conditions of Theorem 2 be satisfied.
Then the estimation Ae of the potential domain
A{K,α,β1,β2} of practical stability for the system governed
by eqs. (2a–2b), is determined with

2 1 2 2 1([ ]) ( ) ( / )nL I S Sα αβ β=ℵ − ∩ ∩eA (40)

where the set A is given with eq.(29).
For the sake of brevity, the proofs of previous theorems

are omitted here and can be found in the paper of Debeljko-
vić et al. (1998) [16].

Main results: Robustness of practical stability
For the needs of Lyapunov and non–Lyapunov stability

robustness treatment, let discrete descriptor system be desc-
ribed by the perturbed differential equation:

Ey(k+1)=Ay(k)+ pA y(k),  y( 0k )= 0y (41)

where pA  is a matrix representing perturbations in the
system model.

As shown earlier, the basic system governed by eq.(41)
may be transformed into its normal canonical form
achieved by the usual linear nonsingular transformation, as
follows

( ) ( ) ( ) ( ) ( )1 2
1 1 1 2 21 p pk A A k A A k+ = + + +x x x (42)

( ) ( ) ( )34
3 1 4 2 pA k A k A k= + +0 x x x (43)

where x(k)= 1 2[ ( ) ( )]T T Tk kx x ∈ nR  need not represent the

original variables of the system y(k)∈ nR governed by

eq.(41). State co-vectors are given with 1x (k)∈ 1nR and

2x (k)∈ 2nR  with 1 2n n n= + .
The given matrices have the following dimensions:

                  1
1, pA A ∈ 1 1n n×R ,   2

2 , pA A ∈ 1 2n n×R

              3A ∈ 2 1n n×R , 4A ∈ 2 2n n×R , 34
pA ∈ n n×R

In order to simplify the formulation of the stability
robustness results, we introduce the following assumption.

Assumption 1. Matrix 34
pA  in eq.(43) is a null matrix.

The discussions presented in the sequel will be dedicated
to the problem of robustness attractivity property of the
phase space origin with respect to the solutions of the
system governed by eqs.(42-43) in the presence of
unstructural perturbations, Debeljković et al. (1998.a) [17].

To perform an analysis of robustness for the system, eqs.
(42–43), we employ the Lyapunov function, defined by
eq.(32).

Let the rank condition, eq.(7) be satisfied.
Then, by taking into account eqs.(16) and (22), the

expression for the latter difference ∆V(x(k)) for the system
given by eqs.(42-43), becomes

                ∆V(x(k))=
            = T

1x (k) ( ) ( )( )1 2 1 2
TF F L H F F L+ + 1x (k)

                − 1
Tx (k)H 1x (k)= T

1x (k) pZ 1x (k)

(44)

where

1 2 1 2( ) ( )T
pZ F F L H F F L H= + + − (45)

i
i i pF A A= + , (i=1,2) (46)

with pZ  being a real and symmetric matrix.
Now we are in position to state the following result

related to the unstructural perturbations present in the
system and governed by eqs.(42-43).

Theorem 4. Let the rank condition, eq.(7), be satistied,
as well as Assumption  1 and all conditions of  Theorem 1.

Furthermore, let Z and H be two real, symmetric and
positive definite matrices which satisfy the discrete
Lyapunov matrix eq.(24), with the matrix LA  determined
by eq.(25).

Then the estimation De of the potential (weak) domain of
attraction for the system governed by eqs.(42-43) is deter-
mined by eq.(19), if the following inequality is satisfied

2 ( )( ) ( ) ( ) ( )M PL M L M L
ZA A A H

λσ σ σ
Λ

< − + + (47)

where
1 2

PL p pA A A L+ + (48)

Mσ (⋅) being the maximum singular value of the matrix (⋅).
λ(⋅) and Λ(⋅) denote the minimum and maximum

eigenvalues of any symmetric matrix under the consi-
deration.

It is important to underline that the set De is not
singleton.
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Proof. The proof is based on the results presented in
Theorem 1. The only difference is that we use expression
for the latter difference ∆V(x(k)) given by eq.(44) instead of
eq.(22) for the same system governed by eqs.(42-43). But
the evident relationship between these equations established
the following new significant connection, given with

pZ  = 1 2 1 2( ) ( )TF F L H F F L H+ + −

= 1 2( )TA A L+ H 1 2( )A A L+

   + 1 2( )T
p pA A L+ H 1 2( )p pA A L+

  + 1 2( )TA A L+  H 1 2( )p pA A L+

      + 1 2( )T
p pA A L+ H 1 2( )A A L+ −H

    = −Z + T
PLA H PLA  + T

LA H PLA + T
PLA H LA

(49)

so that

( ) ( ) ( ) ( )
( ) ( )
( ) ( )

1 1 1 1

1 1

1 12

T T
p

T T
PL PL

T T
PL L

k Z k k Z k
k A HA k
k A HA k

= − +
+ +
+

x x x x
x x
x x

(50)

but

1
Tx (k) T

PLA H PLA 1x (k) +

               + 2 1
Tx (k) T

PLA H LA 1x (k) ≤

               ≤ Λ(H) 2
1|| ( ) ||PLA kx

               + 2Λ(H)|| PLA 1x (k)||⋅|| LA 1x (k)||

               ≤ Λ(H) 2
Mσ ( PLA ) 2

1|| ( ) ||kx

  + 2Λ(H) Mσ ( PLA )|| 1x (k)|| Mσ ( LA )|| 1x (k)||

                     ≤ Λ(H)( 2
Mσ ( PLA )

     + 2 Mσ ( PLA ) Mσ ( LA )) 2
1|| ( ) ||kx

(51)

and also

( ) ( ) ( ) ( )2
1 1 1

TZ k k Z kλ ≤x x x (52)

so, combining eqs.(47-52), one can get that the matrix pZ
is negative definite under the following condition

Λ(H)( 2
Mσ ( PLA )+2 Mσ ( PLA ) Mσ ( LA ))<λ(Z) (53)

The preceding equation is always fulfilled if the
condition imposed by eq.(47) is satisfied, implying that the
negative definiteness of matrix pZ , and consequently the
same property of the latter difference of function  ∆V(x(k)).

The rest of the proof is identical to that carried out in the
corresponding part of the proof in Theorem1, so it is
omitted here.

In order to achieve a corresponding robustness stability
consideration in the presence of structural perturbations for
the system governed by eqs.(42–43), the following
assumption should be introduced.

Assumption 2. Let
1 2

1: , 1, 2,...PL p p PijA A A L a i j n+ + = =   (54)

where the matrix L is any solution of eq.(15).
Some constraints should be, also, imposed on the

elements of matrix PLA  such as

 Pija ≤ ijπ (55)

where ijπ  are known constants with particular values.
Theorem 5. Let the rank condition, eq.(7), be satisfied,

as well as Assumption 1 and 2, and all conditions of
Theorem 1. Furthermore, let Z and H be two real,
symmetric and positive definite matrices which satisfy the
discrete Lyapunov matrix equation (24), with the matrix

LA  determined by eq.(25).
Let

11 ,
max ij
i j n

π π
≤ ≤

= (56)

Then the estimation De of the potential (waek) domain of
attraction for the system governed by eqs.(42-43) is
determined by equation (19), if the following inequality is
satisfied

π <
1

1
n

2 ( )( ) ( ) ( )M L M L
ZA A H

λσ σ
Λ

 
− + + 
 

(57)

Moreover, set De is not singleton.
Proof. The proof is based on the paper of Kolla et al.

(1989) [24], where the following relations were exactly
proved:

( )1 1M nσ Π π=  for the matrix 1Π

with all identical elements being π and

Mσ (Π) ≤ Mσ ( 1Π ), since ijπ ≤π

The rest of the proof is identical to that presented in
Theorem 4 and omitted here for the sake of brevity.

Now we are in position to present another result which
represents a significant contribution to the analyzing
stability robustness problem in the context of practical
stability of the system governed by eqs.(42,43).

In order to achieve simplified and condensed results we
introduce the following assumption:

Assumption 3. The following conditions are valid for
the given matrices

1
1|| ||pA ε≤ , 2

2|| ||pA ε≤ , ||L|| ≤ 3ε (58)

where iε =1,2,3, are real, positive numbers.
In order to carry out an appropriate analysis of

robustness properties for this class of system, we adopt
Lyapunov approach and the corresponding agregation
function, given by eq.(32). Suppose that the rank condition,
eq.(7), is satisfied.

Then, taking into consideration eq.(16), as well as
eq.(36), the expression for the latter difference ∆V(x(k)),
eqs.(42-43), becomes:

( )( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )

1 1 2 1 2 1

1 1 1 1               

TT

T T
p

V k k F F L H F F L k

k H k k Z kρ

∆

ρ

= + + −

− =

x x x

x x x x
(59)

where

1 2 1 2( ) ( )T
pZ F F L H F F L Hρ ρ= + + − (60)

( ), 1,2i
i

i pF A A i= + = (61)

where pZ ρ  is a real symmetric matrix.
The previous results enable us to promote the next

significant contribution.
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Theorem 6. Let the rank condition, eq.(7), be satisfied,
as well as Assumption 1 and 3. Furthermore, let H be a real
and symmetric matrix. If LA  is any matrix satisfying
eq.(15), then the system governed by eqs.(42-43), has
solutions which are {K,α, 1β , 2β } practically stable and
the estimation Ae of the potential (weak) domain of
{K,α, 1β , 2β } practical stability can be determined on the
basis of eq.(40), if the following conditions are satisfied:

(i)
( ) ( ) ( )

( ) ( )

2
1 2 3

1 2 3        2 0T
H H

Z HΛ Λ ε ε ε
Λ Ω Ω ε ε ε

+ + +
+ + ≤

(62)

(ii) ( ) ( ) 1/ ,k H H kρ Λ α λ β< ∀ ∈K (63)

(iii) 2
1 2/L β β≤ (64)

the matrix Z being determined by eq.(37), and the matrix
HΩ  defined as

HΩ  = H 1 2( )A A L+ (65)
Proof. The proof is based on the proof of Theorem 2.
The only difference is in the used expression for the

latter difference ∆V(x(k)) along the trajectories of system.
On the basis of eqs.(59-61), one can get

( ) ( )

( ) ( )
( ) ( )

1 2 1 2

1 2 1 2

1 2 1 2

1 2
1 2

( ) ( )T
p

T

T
p p p p

T
p p

Z F F L H F F L H
A A L H A A L

A A L H A A L

A A L H A A L H

ρ ρ

ρ

= + + −

= + + +

+ + + +

+ + + −

(66)

and using the condition (i) of this theorem, one can finally
get

( ) ( )
( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( )

( ) ( )

( ) ( )
( ) ( )

11

1 2 1 2 11

1 2 1 2
11

1 2
1 2 11

T
11

1 2 1 2
11

1 2
11

2
1

2 21 2
1

21 2
1

2
1

1 2 3

2

2

2

T

T
p

TT

T
p p p p

TT
p p

TT
p p p p

TT
p p H

p p

T
H p pH

k Z k

k A A L H A A L H k

k A A L H A A L k

k A A L H A A L k

k Z k

k A A L H A A L k

k A A L k

Z k

H A A k

A A k

Z k

H

ρ

ρ

Ω

Λ

Λ

Λ Ω Ω

Λ

Λ ε ε ε

=

+ + −

+ + +

+ + +

=

+ +

+ ≤

≤

+ + ⋅

+ + ≤

≤

+ +

x x

x x

x x

x x

x x

x x

x x

x

x

x

x

( )
( ) ( ) ( )

( )( ( ) ( )
( ) ( ) ) ( )

22
1

22
1 2 3 1

2
1 2 3

22
1 2 3 1

2

2 0

T
HH

T
HH

k

k

Z H

k

Λ Ω Ω ε ε ε

Λ Λ ε ε ε

Λ Ω Ω ε ε ε

+ +

≤ + +

+ + ≤

x

x

x

(67)

On the basis of the last inequality and other used
relations, one can finally get

V(x(k + 1)) ≤ ρVx(k) (68)

so the rest of the proof is identical to that carried out in the
proof of Theorem 2.

The estimation Ae of the domain of practical stability is
given by eq.(40), and consequently follows from the proof
of Theorem 2 and indisputable fact that every initial
condition with the property 

20 ([ ])n IL I ϕ∈ℵ − ⊆x
generates at least one solution which is {K,α, 1β , 2β }
practically stable.

This Theorem gives only the sufficient conditions which
guarantee {K,α, 1β , 2β } practical stability robustness of the
system under consideration and the robustness of estimated
Ae potential (weak) domain {K,α, 1β , 2β } of practical
stability. The maximum perturbations of model matrices
presented in eqs.(42-43) are determined by Assumption 3
and constraints expressed directly by Theorem 6.

It is necessary to admit that the same expressions have
been derived for the estimation of potential (weak) domains
of practical stability in two cases: for the perturbed and
nominal system. This is obviously the consequence of the
adopted Assumptions 1 and 2.

Conclusion
On the basis of theoretical explanations, some important

features of this particular class of systems have been
exposed.

In the first part of the paper it has been shown that the
use of Lyapunov’s direct method allows simple sufficient
algebraic conditions to be derived for testing the existence
of solutions of linear discrete descriptive systems (LDDS)
which converge toward the origin of the system’s phase
space. The determination of the potential domain of attrac-
tion of the origin is also analyzed for a class of time–invari-
ant regular and irregular LDDS.

These results could be a basis for the future development
of similar existence analysis for completely general nonli-
near and time–dependent discrete descriptor systems. The
results presented in the first part of the paper give an indi-
cation for a possible convenient approach in that sense. The
results are adapted to cater for the robustness of attraction
property of the phase–space origin for two different classes
of perturbed LDDS.

The second part of the paper concerns the same class of
systems, treating the problem of investigating simple suffici-
ent algebraic conditions for the existence of particular soluti-
ons with specific practical stability constraints. The estimati-
on of the potential (weak) domain of practical stability is ob-
tained. The results could serve as a basis for the further de-
velopment of similar existence analyses for other classes of
LDDS. The results are adopted for the classical investigati-
ons of perturbed systems stability robustness.

Appendix B concerns the problem of attraction property
of the phase-space origin for this class of systems, using the
same methodology, but starting from the other state space
system representations, including quite different expression
for perturbed terms in the system models.

The main intention of these expositions was to underline
that the results derived in connection with robustness are
mostly dependent on initial data concerning the system un-
der consideration and the structural form of adopted pertur-
bed terms.
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Appendix A - Notations
Singular values of the matrix D are denoted with

( )Dσ and are defined in the following manner

( ) ( )TD DDσ λ= (A1)

with denotations max ( )Dσ  and min ( )Dσ  for the maximum
and minimum singular value, respectively.

D  will denote the matrix all entries of which represent
the absolute values of its elements dij .

The symmetric matrix Ds  is a symmetric part of the
square matrix D, such that

2
T

s
D DD += (A2)

D≥0 denotes the positive semi-definite matrix, D>0 the
positive definite and D<0 the negative definite matrix.

Notation 1 2D D≤  will be used for those matrices the
elements of which satisfy the following relation: 1 2ij ijd d≤

∀i,j.

Appendix  B  -  An alternative test for the
investigation of phase space origin attractivity

properties  of the linear discrete descriptor systems
Consider the linear descriptive discrete system repre-

sented by its state space model in the following form

Ey(k+1)=Ay(k)+fp(y), y( 0k )=y0 (B1)

usually with k0 =0.
Function fp(y) represents the vector of general system

perturbations.
Introducing a suitable nonsingular linear transformation

( ) ( ), det 0T k k T= ≠x y (B2)

a broad class of linear descriptive discrete systems, eq.(B1),
can be transformed in to the following form

( ) ( ) ( ) ( )1 1 2 21k A k A k T+ = + +1 1px x x f x (B3a)

0 = 3A 1x (k)+ 4A 2x (k) + f2p(Tx) (B3b)

ET = 0
0 0
I 
  

,    AT = 1 2

3 4

A A
A A
 
  

(B4)

where x(t)=[x T
1 (t) 2

Tx (t)]T∈R n  is the state decomposed
vector, with ( ) 1

1
T nt ∈x R  and ( ) 2

2
T nt ∈x R  with n=n1+ n2.

The matrices Ai, i=1,2…,4, have appropriate dimensions.
Moreover, it is clear that

det(ET)=detEdetT=0 (B5)

with detT≠0.
Under the applied transformation, the perturbation vector

can be expressed as:

( ) ( )

( ) ( )
( )

( )
( )

1

2

T
T
T

= =
   = = =      

p p

1p

2p

f y f x
f x f xf x f x f x

(B6)

The vector f(x) being decomposed on two subvectors
f1(x) and f2(x).

Stability robustness of discrete descriptor systems with
unstructured perturbations

Let us consider the system governed by eqs.(B3a-B3b)
under the following assumption.

Assumption B1. The perturbation vector can be adopted
in the following form

( ) ( )
TT T  1f x f x 0 (B7)

Quasi-Lyapunov function is adopted as in the form given in
eq.(20).

Having in mind that H is a symmetric matrix, implying
that

( ) ( )1 1 1 1 1
T TA H HA=1x f x f x x (B8a)

and

2 1 1 1 2 2
T T T TA HA A HA=2 1x x x x (B8b)

the forward difference is given with

∆V(x)=

= ( )1 1
T T

L LA HA H−x x + 2 ( )T T
LA H1 1x f x + ( ) ( )T Hf x f x1 1

(B9)

Theorem B1. Let the rank condition, eq.(7), be satisfied
and let L be any solution of the matrix equation (15), so that
(16) is valid, too. The perturbation subvector may be
adopted in the following manner

( ) P=1 1f x x (B10)

with P being the perturbation matrix.
Let Assumption B1 be satisfied.
Then the system (B3) possesses a subset of solutions

covergent to the origin of phase space if the following
condition is satisfied:

( )
1/ 2

2 min
max max max

max

( )( ) ( ) ( ) ( )L L
ZP A A H

σσ σ σ
σ

 < − + + 
  (B11)

1 2LA A A L= +  being a discrete stable matrix, with a real
symmetric positive definite matrix TH =H>0 being the
solution of the discrete Lyapunov matrix equation given by
eq.(25) for any symmetric matrix Z = TZ > 0.

Proof. Let all conditions of Theorems B1 be fulfilled.
Then one can easily write

( 1) ( ) ( )Lk A P k+ = +1 1x x (B12a)

3 4( ) ( )A A L k= + 10 x (B12b)

Under the introduced assumption equation (B10), having
in mind the validity of eq.(16), the following result can be
written

( )1f x = L
   =      

1 1
1 1

2 1

x xf fx x = ( )1f x (B13)

On the basis of previous results, one can write:

( ) ( )( ) ( )1 12( )T T T
L SV k Z P HA P HP k∆ = − + +x x x (B14)

In order to have the asymptotic stability of the system
governed by eq. (B12), it is necessary that



42 D.LJ.DEBELJKOVIĆ, M.B.JOVANOVIĆ, S.A.MILINKOVIĆ: ROBUSTNESS STABILITY ANALYSIS OF LINEAR TIME-INVARIANT...

2( ) 0T T
L SZ P HA P HP− + + < (B15)

This is valid if

max min(2( ) ) ( )T T
L SP HA P HP Zσ σ+ < (B16)

Using the very well-known inequality, one can easily get

( ) ( ) ( )max 1 2 max 1 max 2D D D Dσ σ σ+ ≤ (B17)

so from (B16) directly follows

( ) ( ) ( ) ( )( ){ }
( )

2
max max max max

min

2 LH P A P

Z

σ σ σ σ

σ

+ <

<
(B18)

Now we shall discuss both roots of eq.(B18).
For P≠0, maxσ (P)>0 and eq.(B18) gives eq.(B11).

Therefore, when the condition given by eq.(B11) is
fulfilled, V(x) is a quasi-Lyapunov function for the system
governed by eq.(B12). Since we have the rank condition to
be satisfied and having in mind the Assumption B1 it
follows that the perturbed system (B3) possesses a subset of
solutions which converge to the origin of phase – space.

Remark B1. As well as in the case of time-invariant ti-
me continuous systems, Patel and Toda, (1980) [32], the
constraint given with eq.(B11) has its maximum when Z=I,
i.e. when minσ (Z) =1.

Proof. For the given matrix LA , eq.(B11) has its
maximum when

( ) min

max

( )
( )
ZZ H

σψ
σ

= (B19)

has the maximum, where the matrices H and Z are
connected by equation (24).

Since the relation, given by eq.(24) is linear upon H and
Z, it follows that if the matrix H is the solution of that
equation, for the particular matrix Z, then qH, is also the
solution of the same equation for qZ, where q is any
positive number.

Now for any matrix Z>0, let us select q, such that
q=1/ minσ (Z).

Then

min

max

( )( ) ( ) ( )
qZqZ ZqH

σψ ψ
σ

= = (B20)

Indeed, ψ is unvariable for any constant value of q.
Since we have: minσ (qZ)=1, it follows:

( )
max

1
( )qZ qHψ

σ (B21)

Let matrix H� >0 be the solution of the following matrix
equation

T
L LA HA H I− = −� � (B22)

where

ψ(I) = min

max

( )
( )

I
H

σ
σ � =

max

1
( )Hσ � (B23)

Using the compact solution of Lyapunov matrix discrete
equation, Ogata (1987) [29], one can get:

qH - H~ =
0

( ) ( )T k k
L L

k
A qH I A

∞

=

⋅ −∑ (B24)

Since σ(qH) ≥ 1, it follows that qH−I ≥0, so we find qH
− H� ≥ 0 and maxσ (qH) ≥ maxσ ( H~ ).

Therefore, from eqs.(B20-B21) and (B23) directly
follows

ψ(I)≥ψ(H) (B25)

for any matrix with the property H= TH >0.
So it has been proved that Z=I gives the maximum for

eq.(24).

Stability robustness of discrete descriptor systems with
structured perturbations

Structural independent perturbations

Let the rank condition (7) be satisfied, under the conditi-
on that matrix L is any solution of eq.(15), so eq.(16) is also
fulfilled.

The perturbation subvector, having in mind Assumption
B1, may be adopted in a convenient form such as

( )1f x = P(k) 1x (k) (B26)

Constants ijπ  and π are defined in the following manner,
in a way that elements ijp (k) of the matrix P(k) fulfiu

( ) max maxij ij ij ijp k p π π π≤ = = (B27)

Theorem B2. System given with (B3) is stable if the
following condition is satisfied

π< 1
n (− maxσ ( LA ) + ( )

1/ 2
2 min

max
max

( )( ) ( )L
ZA H

σσ
σ

 + 
 

) (B28)

It should be noted that maxσ ( 1P ) = nπ for any matrix all
elements of which are π, and it is obviuos that maxσ (P) ≤

maxσ ( 1P ) since ijπ  ≤ π, so the result follows directly from
Theorem B1.

Theorem B3. System (B3) is stable if the following
condition is satisfied

π< − max

max

( | |)
( | | )

T
L S

T
U HA
U H U

σ
σ

 +

+
1/ 22

max min

max

( | |) ( )
( | | ) ( | | )

T
L S

T T
U HA Z

U H U U H U
σ σ

σ

   +    

(B29)

the matrix U having all negative elements, so that |P(k)| ≤
≤πU.

Proof. The left side of eq. (B16) satisfies

     max ( 2( ) )T T
L SP HP P HAσ + ≤

         ≤ maxσ ( | |TP HP ) + 2 maxσ ( | |T
LP HA )S ≤

         ≤ 2π maxσ ( | |TU HU ) + 2π maxσ ( | |TU HU )S

(B30)

So, according to the eq.(B16), the system governed by
eq.(B3), i.e. eq.(B12), possesses the subset of solutions
which converge to the origin of phase–space if
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               2π maxσ ( | |TU HU )+

               +2π maxσ ( | |TU HU )S < maxσ (H)
(B31)

wherefrom follows eq.(B29), since π>0.
If the matrix P(k) is known or we can estimate the

maximum values of all elements in eq.(B27), then the
matrix U may be formed as: U=[ iju ],  iju = ijπ /π.

In this case it is obvious that  0 ≤ iju  ≤ 1.

If the perturbation ijp  is not explicitly known, iju  can
be used simply as a positive real number.

If the perturbation ijp  of Lija  elements of the matrix LA

is equal to zero, then directly follows: iju  = 0.

Structural dependent perturbations
In some classes of problems there are problems with a

relatively small number of unknown parameters. In such
cases, the uncertain time-dependent matrix P may be for-
med in the following way

i iP k P= (B32)

where iP  are constant matrices and ik  are uncertain para-
meters which can vary independently.

Let us define mn×mn and n × n symmetric matrices

ppH =

1 1 1 2 1

1 2 2 2 2

1 2

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

T T T
S m S

T T T
S S m S

T T T
m S m S m m

P HP P HP P HP
P HP P HP P HP

P HP P HP P HP

 
 
 
 
  

"
"

# # # #
"

(B33)

and

( )T
api L i SH A HP= (B34)

Theorem B4. System (B3) with the structural perturba-
tion term given by eq.(B32) possesses the subset of soluti-
ons which converge to the origin of phase–space, if the
following condition is satisfied

( )2
max max min

1 1
| | ( ) 2 | | ( )

m m

i pp i api
i i

k H k H Zσ σ σ
= =

+ <∑ ∑ (B35)

or

max

max
1/ 22

max
min1

max max

( )
| | (| |)

| |
( )

(| |) (| |)

api
ij

pp

m

api
i

pp pp

H
k m H

H
Z

m H m H

σ
σ

σ
σ

σ σ
=

 < − + 
 

    
  + +  
       

∑ (B36)

Proof. From the proof of Theorem B1 and using eq.
(B32), the condition given with eq.(B16) is given in the
following form

( )

max
1 1

max max
1

( )

2 ( )

m m
T

i j i j
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Let

1 2[ ]TmK k I k I k I= " (B38)

Then
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and
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Also
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Now, taking into acount eqs.(B39) and (B40), equation
(B35) implies eq. (B37).

For the second part of the theorem one may write:
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and
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Furthermore
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Equations (B42-B44) show that eq.(B35) implies eq.
(B36), which concludes the proof.
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Analiza robusnosti stabilnosti linearnih stacionarnih deskriptivnih
diskretnih sistema

Diskretni deskriptivni sistemi predstavljeni su u matematičkom smislu kombinacijom diferencnih i algebarskih jednačina, pri
čemu ove druge predstavljaju ograničenje, koje opšte rešenje mora da zadovolji u svakom trenutku. Osnovna dinamička
analiza ove klase sistema u vremenskom domenu podrazumeva ispitivanje stabilnosti, kako sa pozicija Ljapunova, tako i sa
pozicija stabilnosti na konačnom vremenskom intervalu. Mimo toga, od posebne je važnosti i očuvanje ove važne osobine
sistema i u prisustvu različitih perturbacija kako bi se i u krajnje nepredvidljivim uslovima obezbedilo kvalitetno ponašanje
sistema. Ova složena problematika danas je predmet oblasti upravljanja, poznatija kao teorija robusnosti.

Ključne reči: linearni diskretni sistemi, deskriptivni sistemi, stabilnost u smislu Ljapunova, stabilnost na konačnom vremen-
skom intervalu, robusnost stabilnosti.

Analyse de la robustesse de stabilité chez les systèmes discrets, descriptifs,
stationnaires et linéaires

Les systèmes discrets et descriptifs sont présentés, mathématiquement, par la combinaison des équations différences et des
équations algébriques. Une contrainte des équations algébriques doit être satisfaite par une solution générale. La principale
analyse dynamique de ces systèmes dans le domaine de temps comprend ľanalyse de la stabilité par la méthode de Lyapunov et
dans ľintervalle de temps limité. Il est très important de garder cette caractéristique du système en présence des perturbations
différentes afin ďassurer le comportement satisfaisant du système. Cette problématique complexe est le sujet ďun domaine de
contrôle connu comme la théorie de robustesse.

Mots-clés: systèmes discrets et linéaires, systèmes descriptifs, stabilité selon Lyapunov, stabilité dans ľintervalle de temps limité,
robustesse de stabilité.




