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Normal coordinates evaluation during tracking of aerial targets has been presented. Errors and the space model of
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Introduction
N order to estimate target position in the space modern
air defense systems usually use different sensors as radar

or optoelectronic observing and sighting devices. These
systems pointed and directed aerial target automatic taking
spherical coordinates for distances and angles, to the target,
by direct measuring in the real time.

Radar equipment for tracking and targets estimation, has
excellent acquisition range and tracking reliability but it is
very sensitive to jamming. In order to avoid detection, jam-
ming and destruction, optoelectronic tracking systems of the
passive type are used more frequently. They usually have la-
ser range finders, CCD and IR cameras and the possibility to
estimate bore sight line of camera and the two positioning
servo platforms.

Target tracking and estimation in the air space is the pro-
cess that consists of operations such as directing a sighting
device, positioning line and coordinate measurements, and
finally, evaluating target kinematic parameters.

Pointing of the sighting device is realized by the auto-
matically-servo device, around two perpendicular axes.
Measurement of the target position in the air space is reali-
zed by measuring the range and the sphere angles of the
range sight axis.

Kinematic performances of the target motion are the vec-
tors of the target position and velocity as well as the second
derivation of the target position. Determination of kinematic
values is also coupled with mathematical space of statement
models adapted for dynamical systems estimation.

The values that determine the target motion are simply
the values of the target state. The basic assumption for the
correct estimation of the target state values is a good preci-
sion of coordinate measurements, and the correct statistical
evaluation of the errors properties. This paper presents a
method of coordinates estimation for the target state values,
based on the measured data by an appropriate mathematical
model.

Coordinate systems, its connections and
transformations

The position of the target in the air or on the Earth surfa-
ce can be determined by geographical or central coordinates
in relation to the Earth fixed point (Fig.1). These coordinate
systems are the Earth coordinates, and are usually used for
studying the relative motion of flying vehicles [1].

Figure 1. Coordinate systems on the Earth ellipsoid

The spherical Earth shape cannot be used for appro-
ximations that are correct enough which is not the case with
ellipsoidal shape. More than a hundred mathematical
expressions of ellipsoidal models of the Earth have been
used in the world until today. Bessel, Hayford, Krasowsky
created some of them, but the most frequently used one is
the Bessel ellipsoid with the following characteristics:
– big axis          a = 6 377 397.155 m
– small axis       b = 6 356 078.963 m

The position of any point O in the space of the Earth
(Fig.1), is determined by the geographical coordinates
(H,ϕ,λ):

I
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H (m) – Sea altitude
ϕ (º) – geographical width (Position to the

GREENWICH line)
λ (º) – geographical length (Position to the equatorial

line)
The geocentric coordinates G (u,v,w) (Fig.1) are used

for the transient operations of geographical coordinates
transforming them to the geodetic coordinates, and also for
the long range trajectories of projectile and other flying
vehicles.

The origin of this system is the Center of the Earth ellip-
soid G. The axis Gu lies in the equatorial plane in
Greenwich meridian initial direction. The axis Gv, lies in
the equatorial plane but perpendicular to the plane Guv
forming the right-orientated coordinate space.

The equation of the Earth ellipsoid in the geocentral co-
ordinates system is

2 2 2

2 2 2 1u v w
a a b

+ + = (1)

The geodetic coordinates O (x,y,z) (Fig.1), are used for
the determination of sighting devices position for the
weapons and also for the flying vehicles trajectories. The
initial point of this coordinate system is the point O with the
geographical coordinates O (Ho,ϕo,λo). The axis Ox is ori-
entated to the North (N), and the axis OZ to the East (E).
The plane OXZ is the parallel plane with the tangential line
of the ellipsoid plane at the point P of the intersection of the
perpendicular line to the ellipsoid at the point O. The axis
Oy overlaps with this perpendicular line (and plane OXY
overlaps with the meridian plane of the O point).

If the geographical coordinates (H,ϕ,λ) of an arbitrary
point M are known, their perpendicular coordinates M(u,v,w)
in the geocentric coordinate system are determined by
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The parameter qp is determined by
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If the perpendicular coordinates of the point M(u,v,w) in
the geocentric system Guvw are known, the same point
M(H,ϕ,λ), has the geographical coordinates
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The parameter qp is possible to be evaluated by the met-
hod of successive approximation as a solution

4 3 2
4 3 2 1 0 0p p p pa q a q a q a q a+ + + + = (5)

The coefficients of the polynomial depend on the known
parameters and are determined by
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The transformation of the coordinates of the point M
from the geocentric system Guvw into the geodetic coordi-
nate system Oxyz, and vice versa, can be performed by one
translation and two rotations of the geocentric coordinate
system.

The origin of the geodetic system Oxyz is determined by
the geographical coordinates O(Ho,ϕo,λo). Its coordinates in
the geocentric coordinate system O(uo,vo,wo) are given by
expression (2).

The relations between the point M coordinates in geocen-
tric and geodetic systems are expressed in the space-state
form as

0
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The rotation matrix of the system (Ao) has the form
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The arbitrary point M with coordinates in the geocentric
system Guvw, when its coordinates in the geodetic system
Oxyz are known, is obtained from matrix eq.(7) in the form

0

0 0

0

T
u u x
v v A y
w w z

     
     = +
          

(9)

In this equation T
oA  is the transported matrix of the ort-

hogonal matrix Ao.
It is usually necessary to evaluate the connection

between the coordinates of an arbitrary point in two geode-
tic coordinate systems Rxyz and Tξηζ  with the origins
determined by the geographical coordinates R(Hr,ϕr,λr) and
T(Ht,ϕt,λt).

The normal (perpendicular) coordinates in the geocentric
system of the points R and T is R(ur,vr,wr) and T(ut,vt,wt),
determined by eq.(2).

The coordinates of the point T in the geodetic plane
R(xyz) are determined by eq.(7) in the form

t t r

t r t r

t t r

x u u
y A v v
z w w

−   
   = −
   −   

(10)

where At = [aij(ϕt,λt)] is the matrix equation of relation (8).
The coordinates of the point R in the geodetic system

Tξηζ, according to the same relation, has the expression
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From this equation we can also obtain the matrix
expression of At in the form determined by (8).

The relation between the coordinates at the point T in the
system Rxyz and the coordinates of the point R in the
system Tξηζ has the form
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(12)

where
T

rt r tB A A= (13)

is the rotation matrix of the system Tξηζ into the Rxyz co-
ordinates, and its elements have the following scalar form
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If the coordinates of the point M(ξ,η,ζ), in the geodetic
coordinate system Tξηζ, are known, the same point M, in
the geocentric coordinate system, according to eq.(9), is

t
T

t t

t

u u
v v A
w w
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η
ζ

     
     = +
          

(15)

The coordinates of the point M(u,v,w) in the geodetic
coordinate system Rxyz, according to the eq.(7), are
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Replacing relation (15) into eq.(16) the coordinates in
the matrix expressions are
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Considering relations (10)-(13) we obtain the needed
correlations between the coordinates of the point M in the
geodetic coordinate system Rxyz and Tξηζ  in the form
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When the origins of both geodetic coordinate system are
at small distances, (R is close to T), i.e. r tϕ ϕ≅  and

r tλ λ≅ , the rotation matrix Brt, in eq.(18), becomes the

unit diagonal matrix form (bii=1 and bij=0), which means
reducing the transformations of coordinates by the relations
of translatory-displaced systems.

The rotation matrix Brt, for the transformation from one
geodetic coordinate system to the other is the function of
the geographical angles (coordinates) and their coordinate
points. The fixed points of any sighting device of the
weapon is useful to be put in the position measured by geo-
graphical coordinates.

Space target estimation and attitude measurement
For the positioning of a flying vehicle as a target, the

usualu equipment is an automatically tracking system. This
system measures the coordinates of inclined distance (d),
azimuth angle (α ), and elevation angle ( β ), according to
its own position in the self coordinate system (Fig.2).

Figure 2. Geodetic coordinate system and the tracking point position

According to the measured coordinates of the fixed point
M(d,α,β) - the tracking point, in the geodetic coordinates
(system Oxyz), are:

cos cos
sin
cos sin

x d
y d
z d

β α
β
β α

=
=
=

(19)

Sighting equipment for tracking flying targets is rotatea-
ble over the perpendicular axes. The sensors on the axes
measure azimuth angles ( sα ) and elevation ( sβ ) of the bo-
resight optical lines of sensors (CCD, TV or IR camera).
Laser rangefinders and radar sensors estimate the target di-
stance (d).

Signals obtained from the sighting radar equipment are
proportional to the target angles real time range.

Optical signals from TV or IR cameras are usually digi-
talized in the matrix pixels (rasters) form, thus enabling the
estimation of the target center ( ),ξ η  according to the sen-
sor bore sight axis C (see Fig.3).

Figure 3. Target on the sensor display

   Target
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The azimuth and elevation angles of bore sight optical
axis OC and the target line OH in the optical field of the
display are shown in Fig.4. The optical axis OC is normal
to the plane of Cξη which is at the distance of OC=d from
the camera used for measuring the lateral inclination ξ and
η (mm).

The coefficient of the correlation usually takes the value
k=1/d. The best correlation of the target line angles is obtai-
ned from the triangles ∆OAF ∆OCD, ∆OHF and ∆OAF
(Fig.4)

cos sin

cos ( )cos

ktg OA s k s
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tg kd
HF ADtg tg sOF OA

ξ ξ∆α
β η β

α α ∆α
η∆β η

β ∆α β ∆β ∆α

= =
−

= +

= =

= = = +

(20)

Small angles of optical devices give the following
approximate expressions

, cos 1,tg tg∆α ∆α ∆α ∆β ∆β= = = (21)

The local angles of target lines give the following
equations

s

s

α α ∆α
β β ∆β
= +
= + (22)

The angles of displacement of the target line to the sig-
hting line given by the optical zero bore sight line, are de-
termined by

cos sins s

k
k

k

ξ∆α
β η β

∆β η

=
−

=
(23)

Figure 4. Observing field of the optical sighting device.

Model and types of errors in measuring target
tracking distance (range) and angles

Error analysis has an important role for target tracking be-
cause most of the tracking methods need information on er-
rors. Errors of measurement are random values, known as
noise values that underlie the process and its exit parame-
ters. The exit signal of the process is superposed on the noi-

se as the additional value during measurement, and its
expression is [2,3]

mr r v= + (24)

This equation is known as the “observing model”, and
determines a method of data collection. The value rm is the
measured exit signal and r is the possible acceptable sig-
nal and v is the noise signal during measurement. For the
polar spherical coordinates of the target, measured by sen-
sor–platform equipment, equation (24) applied as space of
state is
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( ) ( ) ( )
( ) ( ) ( )
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m d
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t t v t

d t d t v t
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Using equation (22), for the errors of target tracking angles
we get

s

s

v v v
v v v
α α ∆α

β β ∆β

= +
= + (26)

The most important assumption for the error estimation
is that the system errors are excluded, i.e the rectification of
the platform and sensors has average errors of zero state,
equal to zero. This form is

E[vd]=0, E[vαS]=0, E[vβS]=0, E[v∆α]=0, E[v∆β]=0 (27)

That means that the mathematical expectations of all mea-
sured values are equal to their correct values

[ ]mE r r= (28)

Random errors (noise) in the measurement equipment
are the sum of a large quantity of noise that underlie the
Gausian distribution.

The angle and range (distance) estimation processes are
independent, which gives an assumption of noncorelation
of their noise. The constants of periods of sensors are a few
hundred times smaller than the time constants for target tra-
cking. That means that, in any moment of the tracking peri-
od, the errors are independent from two-step times inter-
vals). For these assumptions, the deviations of errors is

2 2 2

2 2 2
s
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σ σ σ
σ σ σ

= +
= +

(29)

Since the white noise of the Gaussian random zero
expiration models is the function of errors and time, the
following applies:
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(30)

All noises of measurement are Gaussian, i.e. they have a
normal distribution of probability with the zero systematic
error,  v∈N(0,Vv). Here Vv is a variance matrix of space for
the noise v. Their diagonal elements are dispersions of the
space vector V, and other elements point out expressed cor-
relations. This is expressed in the following form
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2
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0 0
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v

d

V
α

β

σ
σ

σ

 
 =
 
  

(31)

Optical axis
 Target
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The errors of angles and their displacements ∆α and ∆β
can be obtained in the linear form by the approximation of
the Taylor order. This expression has a general form as

( )

( )

ss

ss

∆α ∆α ∆α∆ ∆α ∆ξ ∆η ∆β
ξ η β
∆β ∆β ∆β∆ ∆β ∆ξ ∆η ∆β
ξ η β

∂ ∂ ∂= + +
∂ ∂ ∂
∂ ∂ ∂= + +
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(32)

The angle displacement dispersions are

2 2 2
2 2 2 2
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     ∂ ∂ ∂= + +     ∂ ∂ ∂     
∂ ∂ ∂     = + +     ∂ ∂ ∂     

(33)

Equation (33) gives the functional correlation of the ave-
rage squared errors of angle displacements, from the eleva-
tion angle of the instrument optical axis

( ), ( )S Sf f k∆α ∆β ησ β σ β σ= = = (34)

These values are [4,5]

s

s

- for the sighting radar 
0.25 mrad 50  i 5 m

- for the optoelectronic device
0.025 mrad =5  i 2 m

s d

s d

α β

α β

σ σ σ

σ σ σ

′′= = = =

′′= = =

(35)

If the normal resolution of the system is 50 lines/mm,
then the average squared error of the optical system evalua-
tion is

1 0.02 mm50ξ ησ σ= = = (36)

For the proportion parameter k the reciprocal value of
the lens focal distance is f =1500 mm, or f =3000 mm. Re-
lations (34) are determined by the values (0,80 )oβ ∈ , and
shown in Fig.5 and Fig.6.

The eror of the elevation angle ∆β determination de-
pends on the estimation technology after measurement. Be-
sides the estimation error, the elevation angle sβ  of the
theodolite optical axis is also important for the angle error
determination α∆ . This additional correlation gives infinite
increasing of the  error ∆ασ , with the bore sight angle clo-
sing to 90 degrees. But, for the elevations 60-700 this influ-
ence can be taken as unimportant, and errors are not in the
correlation.

Figure 5. Eror dispersion of the azimuth angle

Figure 6. Error dispersion of the elevation angle.

Perpendicular coordinates of target tracking
For tracking and flight target estimation, the geodetic

coordinate system Tξηζ, is fixed for the measurement
equipment on the ground. This coordinate system is a local
system. Weapons usually have a referent coordinate system
Rxyz which is also geodetic. The initial coordinate system is
RXYZ [1,4,5] in Fig.7.

Fixed points of sighting devices and weapon are deter-
mined in the geographical coordinates R(Hr,ϕr,λr) and
T(Ht,ϕt,λt), that enables avoiding the errors of the Earth
sphere as well as using the derived transformations of coor-
dinate systems.

Target estimation and tracking measurements on the tar-
get trajectory are performed in the local coordinate system 
Tξηζ of the high resolution device and are  given in the
form of (d,α,β). These values have to be calculated in the
referent coordinate system Rxyz. For the coordinates of the
target M in the referent coordinate system it is necessary to
evaluate the  weapon position R and the sighting position T
in the geocentric coordinates system Guvw based on eq.(2).
The coordinates of T (xt,yt,zt), i.e. the position of the instru-
ment are given by relation (10).

Figure 7.

The measured point coordinates in the referent geodetic
coordinate system are given by eq.(18) and transformed for
this case

t

t

t

x x
y y Brt
z z

ξ
η
ζ

     
     = +
          

(37)

Target trajectory
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The coordinates xt,yt,zt are the position of the instrument,
Brt is the matrix of rotation of the local coordinate system
into the referent geodetic coordinate system, and, ξ,η,ζ are
the measured point coordinates in the T coordinate system.

These coordinates have the following expressions

cos cos
sin
cos sin

d
d
d

ξ β α
η β
ζ β α

=
=
=

(38)

The position of the start (initial) coordinate system
RXYZ, in relation to the referent system Rxyz is determined
by the azimuth of the X-axis, αx. The relation of the coor-
dinates of M (X,Y,Z) in the initial coordinate system and the
same target point M (x,y,z) in the geodetic referent system
Rxyz is given by

X x
Y C y
Z z

   
   =
      

(39)

The value C is the space of the state in the matrix form that
determines the rotation of the geodetic coordinates Rxyz
into the RXYX. This matrix is given by the following
expression

cos 0 sin
0 1 0

sin 0 cos

x x

x x

C
α α

α α

 
 =
 − 

(40)

In the case that the measurements of distances are mis-
sing, the coordinates of the space target point M can be de-
termined by the intersection of two or three sighting points
measured angles of elevation and azimuth.

The directions of sighting from two or more sighting
devices into the same space target point are not generally
intersected.

The basic hypothesis of the intersection method of two
or more sighting lines is that the target point is placed in the
middle of the minimum distance between two pointed sight
lines. (Fig.8, between the points A and B).

Figure 8. Intersection method for target distance evaluation

The components of the unit vector of the direction of
sighting ei = [eξi eηi eζi]T  in the line space of state form are

cos cos
sin
cos sin

i i i

i i

i i i

e
e
e

ξ

η

ζ

β α
β
β α

=
=
=

(41)

where  αi and βi are the local angles of tracking (sighting)
directions of the target for the number of devices i=1,2.

To evaluate the equations of tracking directions in the re-
ferent geodetic coordinate system Rxyz, unit vectors have to
be taken as the component of scalars, placed on the parallel
lines with the referent coordinate system.

In this mathematical method, the process of evaluation
has to be used by the rotation matrix rtB  with no translation
correction.

The components of the unit vector of tracking directions are

ixi

yi rt i

zi i

ee
e B e
e e

ξ

η

ζ

  
   =
  

   
(42)

The equations of tracking directions are

11 1
1

1 1 1

22 2
2

2 2 2

x y z

x y z

y yx x z z ke e e
y yx x z z ke e e

−− −= = =

−− −= = =
(43)

where xi,yi,zi are the coordinates of the tracking instrument
Ti and , ,xi yi zie e e  are the components of the unit vector ie
for tracking direction in the referent system Rxyz (i=1,2).

The coordinates of A and B points taken in eq.(43) give
the equations

1 1 1

1 1 1

1 1 1

A x

A y

A z

x x k e
y y k e
z z k e

= +
= +
= +

(44)

The parameters k1 and k2 are determined from the condi-
tion that the distance AB=d (represented in Fig.8)

2 2 2 2( ) ( ) ( )A B A B A Bd x x y y z z= − + − + − (45)

The value d is minimal, if the following condition is fu-
lilled

2 2

1 2

( ) ( )0, 0d d
k k

∂ ∂= =
∂ ∂

(46)

The solution is given by the linear form

1 1 2 1

2 1 1 2

0
0

k a k b
k a k b
− + =
− + = (47)

The cooefficients in  eq.(47) are

1 1 2 1 2 1 2

1 1 1 2 1 1 2 1 1 2

2 2 1 2 2 1 2 2 1 2

( ) ( ) ( )
( ) ( ) ( )

x x y y z z

x y z

x y z

a e e e e e e
b e x x e y y e z z
b e x x e y y e z z

= + +
= − + − + −
= − + − + −

(48)

The solution of system (47) is

1 2 1
1 2

1

1 1 2
2 2

1

1

1

a b bk
a

a b bk
a

−=
−

− +=
−

(49)

Equations (44) and (49) give the solution of the coordi-
nates of the points A and B which have a minimum distan-
ce. The middle of this distance is a point of target tracked
by two tracking (sighting) lines. Its coordinates, evaluated
by this intersection model, are
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1 2 1 1 2 2

1 2 1 1 2 2

1 2 1 1 2 2

1 1( ) ( )2 2
1 1( ) ( )2 2
1 1( ) ( )2 2

A B x x

A B y y

A B z z

x x x x x k e k e

y y y y y k e k e

z z z z z k e k e

= + = + + +

= + = + + +

= + = + + +

(50)

The perpendicular coordinates of M (X,Y,Z) in the initial
coordinate system are RXYZ and they are expressed by re-
lation (39).

Determination of errors in measuring the target
rectangular coordinates

The target trajectory and its coordinates can be evaluated
by the statistical „dispersion”, model. The measurement of
the target trajectory coordinates M(X,Y,Z) is done by tran-
sforming the measurement of polar coordinates ( ), ,dα β .
The errors of measuring perpendicular coordinates are, the-
refore, mutually correlated.

The errors measured in the local coordinate system fixed
for the sensor equipment are given in the matrix form (31).
The perpendicular coordinates of the target trajectory in the
local system are given by eq.(38). The coordinates , ,ξ η ζ
obtained from the Taylor order, are given in the form of li-
near errors.

For the matrix equation of perpendicular coordinates and
its errors, the covariance matrix equation is

TV F V Fξ α= (51)

The element of this big matrix product are
2 2 2

2 2 2

2 2 2
V

ξ ξη ξζ

ξ ξη η ηζ

ξζ ηζ ζ

σ σ σ
σ σ σ
σ σ σ

 
 =  
  

(52)

and

( , , )
( , , )

d

F d d

d

ξ ξ ξ
α β

ξ η ζ η η η
α β α β

ζ ζ ζ
α β

∂ ∂ ∂ 
 ∂ ∂ ∂
 ∂ ∂ ∂ ∂ = =

∂ ∂ ∂ ∂ 
∂ ∂ ∂ 
 ∂ ∂ ∂ 

(53)

The scalar solution of the space of state (51) is
2 2 2

2 2 2 2 2
2 2 2

2
2 2 2 2 2

2

2 2 2
2 2 2 2 2

2 2 2

2 2 2
2

2
2 2 2 2

2 2 2

2 2 2
2

( )

L

d

d

d

d

d

d

d

d

d

d

d

d

ξ α β

η β

ζ α β

ξη β

ξζ α β

ξη β

ξ η ξσ ζ σ σ σ
ξ ζ

ησ ξ ζ σ σ

η ζ ζσ ξ σ σ σ
ξ ζ
ξησ ξησ σ

η ξζσ ξζσ ξζ σ σ
ξ ζ

ηζσ ηζσ σ

= + +
+

= + +

= + +
+

= − +

= − + +
+

= − +

(54)

The matrix of errors for coordinate measurements in the
initial coordinate system RXYZ is obtained by introducing
the rotation matrix of the local geodetic coordinate system
into the referent system of Brt and the C matrix

T T
X rt rtV C B V B Cξ= (55)

The relation between Brt and C is given by eqs.(14) and
(40). For the method of “intersection” by two tracking de-
vices, the errors are given by the matrix in the form

2

2
0

0
i

i
i

V α

β

σ
α

σ
 =   

(56)

where i=1,2.
The matrices of covariance of unit vector components

for the line of tracking in the local geodetic system i i i iTξ η ζ ,
after the linearization, given by eq.(41), are determined by

T
e i i i iV Vξ αΦ Φ= (57)

where

( , , )
( , )

i i

i i

i i i i i
i

i i i i

i i

i i

e e

e e e e e

e e

ξ ξ

ξ η ζ η η

ζ ζ

α β

Φ
α β α β

α β

∂ ∂ 
 ∂ ∂
 ∂ ∂ ∂ = =

∂ ∂ ∂ 
 ∂ ∂
 ∂ ∂  

(58)

The matrix equation (57) and its scalar solution are given
by the following expressions

( ) ( )
( )
( ) ( )

2 22 2 2

22 2

2 22 2 2

2 2

2 2 2 2 2

2 2

cos sin sin cos
cos
cos cos sin sin

sin cos cos
cos sin cos sin sin cos
cos sin sin

e i i i i i i i

e i i i

e i i i i i i i

e i i i i i i

e i i i i i i i i i i

e i i i i i i

ξ α β

η β

ζ α β

ξ η β

ξ ζ α β

η ζ β

σ β α σ β α σ
σ β σ
σ β α σ β α σ
σ β β α σ
σ β α α σ β α α σ
σ β β α σ

= +
=
= +
= −
= − +
= −

(59)

By eq.(42), the unit vector matrix ei  given by the refe-
rent geodetic system is

T
exi rti e i rtiV B V Bξ= (60)

where Brti is also a matrix form, given by eq.(14) for any
tracking position.

The method of intersection with two tracking devices is
formed from the matrix elements 1exV  and 2exV  in the
following way

1

2

0
0
ex

e
ex

VV V
 =   

(61)

The matrix of covariance for the errors of the intersecti-
on method in the referent system Rxyz, after linearizing
eq.(50) into the Taylor order, is obtained by the formula

T
x eV F V F= (62)

where F is

1 1 1 2 2 2

( , , )
( , , , , , )x y z x y z

x y zF e e e e e e
∂=

∂ (63)

It is also a matrix form of particular derivations (3x6
matrix) determined, in the same manner as the function Φ,
in eq.(58).
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Finally, the errors of coordinate measurement in the ini-
tial coordinate system RXYZ are obtained, taking into acco-
unt the rotation of coordinates (39), in the form

T
X xV C V C= (64)

where C is the rotation matrix of the referent geodetic coor-
dinate system for the azimuth of firing direction given by
eq.(40).

Measurement system errors evaluation
The error estimation of a measurement system is always

necessary if the tracking process is considered and if a new
flow chart of tracking is formed. For any particular measu-
rement, using matrix equations, at any of the measured po-
ints on the trajectory, it is possible to evaluate the average
error of coordinates determination and other flight parame-
ters in the real time. For any dynamical value of the target,
it is possible to evaluate the average squared error in any
moment of time.

The equations for variance matrices, provide error esti-
mation for a predicted trajectory or a target motion plane.
The average squared errors for coordinates estimation are
the functions of the coordinates of a point in the space un-
der measurement. These values of error dispersions are

, , ( , , )X Y Z f X Y Zσ = (65)

That means, it is possible to evaluate squared errors in
the given plane. If the flight of the target is in the horizontal
plane, of the given interval, then it is possible, by variating
X and Z coordinates, to get the average values of the errors
of the horizontal target flight.

On the basis of the calculated values of the average
squared errors in the given plane, it is possible to draw line
diagrams as the curves of constant values of the squared
average errors.

These diagrams represent the estimation of the measured
errors for the given configuration of the measured equi-
pment. Diagrams are used for:
– precision prediction analysis for the choice of measure-

ment equipment
– flow chart of the equipment line
– flight trajectories choice in the experimental testing pro-

cess, or during the primary analysis for antiaircraft de-
fense.

Simulation of errors of target tracking estimation
in the horizontal plane

For a target that flies in the horizontal plane at the altitu-
de Y=1000 m and the latitude Z∈[-5000 m, 5000 m] of the
range X∈[0,20000 m], the errors are estimated and given in
the diagrams. The following values of flight parameters are
taken.
– geographical coordinates of the launching pad (reference

coordinate system center). RXYZ.

R: Hr=100 m, ' "44 45 46.789o
rϕ = , ' "20 30 40.506o

rλ =

(65a)
– geographical coordinates of measuring sensor equipment

T1:Ht=100m, ' "44 42 41.403o
tϕ = , ' "20 27 28.291o

tλ =
(65b)

– azimuth of the shooting direction 0o
xα = .

The squared average errors, of the target coordinate es-
timation in the referent coordinate system are determined
for the following given conditions:
a) Trajectory of the target is measured by the radar [5]. The

average squared errors of the replacements of the angles
and distance are known. These values are

50"α βσ σ= =   i  dσ =5 m (65c)

b) Trajectory of the target is measured by a sighting device
of optical type with the laser range finder [4]. The avera-
ge squared errors of the azimuth, elevation and range
(distance) of the target position in the space are

( )
( )

2 2 2 2

2 2 2 2

5 2 29 "
5 2 29 "

2 m

s

s

d

α α ∆α

β β ∆β

σ σ σ

σ σ σ
σ

= + = + =

= + = + =
=

(65e)

The values of ∆ασ  and ∆βσ  are only two angle seconds,
in accordance with the diagrams in Fig.5 and Fig.6.
c) Trajectory of the projectile is measured by two optical

sighting devices where one has the same postion as the
case b), while the other has the position

T2:Ht=100m, ' "44 43 42.414o
tϕ = , ' "20 33 34.356o

tλ =
(65d)

The fixed points of the instruments (optical devices) (T1
and T2) for target tracking are shown in Fig.9, in the refe-
rence coordinate system RXYZ.

Figure 9. Horizontal plane disposition of the trackers pad T1 and T2

The calculation of the average square errors for the co-
ordinate target estimation has been realized by computer
simulation. The calculation results are given in diagrams
10, 11, and 12.

The simulation test shows the following results:
– Maximum precision (minimum errors) can be obtained

by two optical sensors by the intersection method, for the
ranges not higher than 15 km.

– For the ranges lighter between 15 km and 20 km maximum
precision (minimal errors) is obtained by the method
applying one optical device and the laser range finder.

– In radar measurements, errors of angles and distances are
greater, then measured by optical devices.
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Figure 10. Average square errors of the coordinates estimation in the
horizontal plane during measurement by the radar (case a).

Figure 11. Average square errors of the coordinates estimation in the
horizontal plane during measurement by the optical device and the laser
range finder (case b).

Figure 12. Average square errors of the coordinates estimation in the
horizontal plane during measurement by two optical devices (case c).

Conclusion
Quality of target tracking and target position estimation,

is one of the most important parameters influencing the per-
formance of any FCS antiaircraft system.

For any configuration of the tracking equipment with the
target correlation, by using the matrix of covariance, it is
possible to estimate errors in any point of the tracking space
in the real time.

Mathematical models of geographical and geodetic co-
ordinates, rearanging and calculation of rectangular coordi-
nates, and transformations in any position of the tracking
(and sighting) device, and weapon on the pad, provide di-
rect relations with any iterative process.

The model shows the area of elevation angles where er-
rors and coordinates measurements have practically inde-
pendent relations between them.

This means that angles of azimuth measurement, and an-
gles of elevation measurement, and their errors are inde-
pendent, in some areas of values.

For the hypothesis of target trajectory and its motion in
the antiaircraft defense, this model provides an advance es-
timation of the errors in any space point of potential target
motion. This provides choosing of an optimal method of
tracking, tactics of defense, and equipment of an sensors
composition, in the real FCS system design. That means
practically the cheapest tracking equipment using predicti-
on evaluation of the erros of tracking.

The main contribution of the tracking and coordinate es-
timation of the whole area is in the mathematical direct er-
rors modeling, over the direct model of coordinate tran-
sformations, that enables composition of the errors no mat-
ter which type of tracking equipment, FCS system uses.
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Analiza tačnosti određivanja položaja cilja u toku praćenja
sistemima sa Zemlje

Predstavljen je postupak određivanja pravougaonih koordinata u procesu praćenja vazdušnih ciljeva. Analizirane su
greške merenja položaja cilja i date su matematičke relacije za izračunavanje matrica kovarijansi grešaka merenja.
Predložen je postupak izračunavanja grešaka merenja položaja cilja u prostoru obuhvaćenom merenjima ili za unap-
red određene pravce kretanja vazdušnih ciljeva, radi analize uticaja tačnosti praćenja cilja na efikasnost sistema pro-
tivvazdušne odbrane.

Ključne reči: praćenje cilja, merenje koordinata, greške merenja, kovarijansna matrica.

Analyse de la précision de la poursuite ďune cible
par ľéquipement terrestre

Ľévaluation des coordonnées rectangulaires pendant la poursuite des cibles aériennes est présentée. Les erreurs de
mesure de la position ďune cible sont analysées et les relations mathématiques pour calculer leurs matrices de covari-
ances sont données. On a proposé une nouvelle méthode pour ľestimation ďerreurs de mesure pendant la poursuite
de la cible dans une zone ou une direction préalablement déterminée afin ďanalyser ľeffet de la précision de la pour-
suite sur ľefficacité de la défense antiaérienne.

Mots-clés: poursuite de la cible, mesure des coordonnées, erreurs de mesure, matrice de covariance.




