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Correlation techniques for the detection of frequency-hopping signals 
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In this paper, an overview, basic principles and analysis of the correlation detection of frequency- hopping (FH) sig-
nals are given. Based on theoretical results for relationships among detection probability, false alarm rate and certain 
signal parameters, the detection performances of correlation methods are presented graphically, analyzed, verified 
and compared. 
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Introduction 
REQUENCY-HOPPING signals, and spread-spectrum 
signals generally, have low probability of interception 

(LPI), i.e. these signals are intentionally designed to make 
the detection process as difficult as possible for unintended 
receivers (interceptors). Difficult detection of FH signals is 
a consequence of the use of a very large number of hopping 
channels (carrier frequencies) and particularly of the use of 
the pseudonoise (PN) sequence for determining FH pulse 
carrier frequencies. The impossibility of the PN sequence 
prediction is crucial in improving protection against inter-
ception and detection of these signals. 

The detection of FH signals is achieved by using energy 
detection [3,4,13,14] and correlation techniques [1,6,7,9]. 
Energy detection, inferior to more complex correlation 
techniques, is easier for implementation. 

There are two basic approaches to energy detection of 
FH signals: a wideband radiometer (energy detector) ma-
tched in the bandwidth (WFH) and the integration time (TFH) 
to the entire FH transmission; and canalized pulse detection 
systems with a set of narrowband radiometers that indivi-
dually cover subbands of the total FH bandwidth and match 
the bandwidth (WH) and the integration time (TH) to the FH 
pulse bandwidth and duration, respectively. An ideal wide-
band radiometer, where a single rectangular filter having 
the bandwidth W=WFH and an integrate and dump (I+D) 
energy detector having the integration time T=TFH are used 
to detect FH signals in the TFHWFH time-bandwidth cell, is 
referred to as a referent FH detection system. 

Pulse detection systems can be worse to energy integra-
tion over the FH transmission in the case of higher THWH 

values. However, for lower THWH values, pulse detection 
can have advantages over a wideband radiometer, disre-
garding the system detection complexity. The reason for 
this is the fact that the probability of FH signal detection in 
the wideband radiometer case, with the integration time 
equal to the emission time TFH, does not depend on the FH 
pulse parameters THWH. 

The analysis of the joint probability of FH signal inter-
ception and detection shows that it is possible to successful-
ly intercept and detect FH signals by means of search re-
ceivers with associated energy detectors [13,14]. The in-

crease of the scan speed and the number of parallel receiver 
channels (multichannel receiver) improves the performanc-
es of FH pulse interception as well as their detection. In-
creasing probability of intercept by the scan speed, when 
the detection time is shortened, is limited by reduced selec-
tivity to narrowband adjacent-channel signals and broad-
band interfering signals [14]. The presence of narrowband 
interfering signals does not introduce significant degrada-
tion of detection performances, but makes the problem of 
the detection threshold adjustment more complex. It can be 
shown that the degradation of detection performances by 
increasing the number of narrowband interfering signals 
from 0 to 2048 is not larger than 5 dB for a typical signal-
to-noise (SNR) ratio ENB/N030 dB (ENB- narrowband sig-
nal energy, N0- one-sided noise power spectral density) and 
the probability of the false alarm of 0.001. In the same way, 
the misalignment of the integration interval in detection 
with respect to the hop period degrades the detection per-
formances less than 2 dB [3,13,14] in this case. 

In the set of the correlation methods of FH signal detec-
tion, optimum coherent and noncoherent average likelihood 
(AL) detection, suboptimum coherent and noncoherent 
maximum likelihood (ML) detection and autocorrelation-
domain detection methods are usually considered. The pa-
pers [1,6] are excellent references for LPI detection tech-
niques of FH signals. 

In this paper, optimum and nonoptimum correlation me-
thods of FH signal detection are analyzed, under the as-
sumption of their sinewave modeling with uniform discrete 
distribution of possible random frequencies. 

Coherent and noncoherent FH signal detector structures 
are based on the Neyman-Pearson detection theory [5,11]. 
Under the assumption of the existence of only single fre-
quency hop per the detection interval T, the optimal FH 
signal detection system is realized by the summation of the 
outputs from the bank of N parallel correlators, one correla-
tor for each of possible random hopping frequencies. This 
AL detection is optimal for slow frequency hopping (SFH) 
where the symbol interval TS and the detection interval T 
are equal, i.e. T=TS. The coherent ML detector, which is a 
suboptimum version of the AL detector, is obtained by test-
ing the presence of signals at each of the N correlator out-
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The structure of the optimum coherent AL detector is 
shown in Fig.1 [1]. 

 

Figure 1. Optimum coherent AL detector of FH signals 

In the case of noncoherent FH pulse detection, the initial 
phase of FH signals (2) is uniform in [0,2], i.e. w()=1/(2), 
[0,2], and the AL ratio has the following form 
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With w()=1/(2), [0, 2], the AL ratio test, in the 
case of noncoherent detection, is 
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The integral in the sum in (9) is recognized as a modified 
Bessel function of the first kind of zero order, defined by 
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By using the former definition of the Bessel function, the 
AL ratio test (9), in the case of noncoherent detection of FH 
signals, can be presented in the following form 
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where 
2 2 2
n cn snq x x   (13) 

and, the correlation values xcn and xsn are given in (10). 
Also, one should notice that random variables, which 

present the summands in (9) or (12), are statistically inde-
pendent because of the assumed spacing f=1/T between 
FH pulse frequencies, that provides the orthogonality of 
these signals in the noncoherent case. 

The structure of the optimum noncoherent AL detector is 
shown in Fig.2 [1]. 

 

Figure 2. Optimum noncoherent AL detector of FH signals 

ML detection of FH signals 
The suboptimum ML (Maximum Likelihood) detector is 

obtained by testing the output of every correlator, instead of 
testing the sum of all outputs, as in the case of the optimum 
AL detector. 

The essence of the suboptimum ML detection is in de-
termining the presence or absence of FH signals at each of 
the N possible frequencies, ignoring the other (N-1) fre-
quencies. The overall decision as to whether a FH signal is 
present is made if the test detects the presence of signals at 
one or more of the N possible frequencies. This version is a 
so-called suboptimum hard-limited version of the AL detec-
tor. The optimum AL receiver may then be viewed as a soft 
combining of the signal tests for individual frequencies 
where the combining is done with exponential weighting 
(expression (6)). 

Therefore, in the case of the ML detection, the decision 
about the presence or absence of signals at nth frequency is 
obtained on the basis of (6) for N=1, i.e. 
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Therefore, the ML detection test may be written in the 

form of (6) by assuming that the random variable nxe  takes 
values 0 or 1 at nth frequency, when the signal is present or 
absent, respectively. Then, in the coherent case of the FH 
signal detection, the ML ratio test has the following form 
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in Fig.3 [1]. 

 

Figure 3. Coherent ML detector of FH signals 
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and, under the hypothesis H0 (only the noise is present, or 
the FH pulse is present at fi, in) in an analogous way, it is 
possible to obtain 

2
0 0: 0 ; / 2y y sH m E N   (19) 

where    denotes expectation. 

Therefore, the normalized Gaussian random variable y'n= 
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H1 (FH) has the mean 02 /sd E N  and the variance 1, 

and under the hypothesis H0 ( FH ) the mean is 0 and the 
variance is 1. Based on (15) and the well-known relation for 
the probability of the Gaussian random variable to exceed a 
certain threshold (    ( ) /T TPr V V Q V m    ), it is pos-

sible to obtain the expression for the probability of FH 
pulse detection at nth frequency (  |D nQ Pr y FH  ) 
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and the probability of the false alarm for FH pulses at nth 

frequency (  |F nQ Pr y FH  ) is 
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These probabilities are independent of n (Q(x) function 
is defined in Appendix 1). 

If we suppose that the FH signal is detected when its 
presence is detected at least at one of the N frequencies, and 
that the false alarm assumes one or more exceedings of the 
detection threshold at some of the N frequencies in the ab-
sence of FH pulses, the probability of detection PD and the 
probability of the false alarm PF have the following form in 
the case of ML detection 
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The noncoherent ML detector is a suboptimum version 
of the noncoherent AL detector. Therefore, in analogy to 
the coherent case, the random variable ln (in analogy to 
(16)) takes the values 1 or 0, according to the FH signal de-
tection optimum test at nth frequency in the noncoherent 
case (derived from (12) for N=1), i.e. 
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The test of the noncoherent ML detector has also the 
form (16), as in the case of the coherent ML detector, but 
the probability of detection QD and the probability of the 
false alarm QF at nth FH pulse frequency, obtained from 
(24), are [11] 
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where QM(,) is the Marcum Q-function (Appendix 1). 
The structure of the suboptimum noncoherent ML detec-

tor is shown in Fig.4 [1]. 

 

Figure 4. Noncoherent ML detector of FH signals 

Analysis of ML detection performances 
To analyze the detection performances of optimum AL 

detectors, it follows from (6,7) that the distribution of a sum 
of independent, lognormal random variables is required. 
This is an unsolved problem and it is possible to use only 
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certain approximations. However, the suboptimum ML de-
tectors have slightly different performances comparing to 
optimum detectors, and their analysis is possible and much 
easier. 

In the case of the coherent ML detector, it follows from 
(20)-(23) that the probability of detection PD has the fol-
lowing form 
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where PF is the probability of the false alarm, and 
d2=2Es/N0 is the SNR. 

In the same way, but by using (25) and (26) instead of 
(20) and (21), respectively, the probability of FH signal de-
tection in the case of the noncoherent ML detector is ob-
tained 
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Expressions (27) and (28) give the probability of FH 
signal detection, PD, in the cases of coherent and noncoher-
ent ML detection, respectively, as a function of the proba-
bility of the false alarm PF and the SNR given by 
d2=2Es/N0. In the case of the energy detection of FH sig-
nals, the probability of detection depends on the product 
TW (the product of the detection time and the bandwidth) in 
the detection cell [15], as well as on the PF and SNR ratio. 
In order to compare the energy and correlation methods of 
FH signal detection, the following relation among 
d2=2Es/N0, TW and the ratio of the FH signal average pow-
er (S) to the average noise power (SN) in the detection cell, 
(2=S/SN=S/(N0W) ) is quite useful 

2 2/ 2d TW   (29) 

Based on (27) and (28), the analysis of detection perfor-
mances in the cases of the coherent and the noncoherent 
ML detector, respectively, is performed in the MATLAB 
software package. Fig.5 shows the probability of detection 
PD, as a function of EFH/N0=d2/2 (or S/SN for TW=100) in 
the case of the coherent ML detector for PF=0.01, PF=0.001 
and PF=0.0001 and N=256 frequencies. The noncoherent 
case is shown in Fig.6 for the same parameters. 

 

Figure 5. Detection performances of the coherent ML detector of FH 
signals 

 

Figure 6. Detection performances of the noncoherent ML detector of FH 
signals 

The results in Fig.5 and Fig.6 show that the noncoherent 
ML detector, because of its simpler realization, has perfor-
mances that are somewhat worse (although insignificantly 
(1dB)) comparing to the coherent ML detector. 

ACD method of FH signal detection 
The autocorrelation-domain (ACD) method of FH signal 

detection improves the detection performances comparing 
to other classic energy (radiometer) methods. The ACD de-
tection is somewhat inferior to the optimum AL and subop-
timum ML detection of FH signals, but the complexity of 
realization is significantly reduced. This method is especial-
ly interesting with modern achievements in the technology 
of real-time correlators and convolvers with a large time-
bandwidth product (TW). 

The mathematical model of the real-time autocorrelation 
detector is shown in Fig.7 [6]. 

 

Figure 7. Mathematical model of the real-time ACD detector 

Therefore, if the total bandwidth of FH signals (WFH) is 
divided into subbands W (WRC), then, in the ACD method, 
the signal processing and the decision about signal presence 
in the bandwidth W are performed on the basis of the ACD 
detector shown in Fig.7, instead of the energy detector. The 
real-time autocorrelator performs transformation from the 
time-domain (t) to a new, so-called correlation domain (), 
where it is expected that the appropriate autocorrelation 
function y() improves the separation between the signal 
and the interference. 

If the output of the correlator y() is sampled at the mul-
tiples of the reciprocal value of the bandwidth W, i.e. at the 
moments k/W, then the ACD detector decision rule in 
the bandwidth W can be presented in the following form [6] 
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where TW=THW=GP is the processing gain in the ACD de-
tector cell, and  

Vk=y2(k),  k=1,2,…,TW-1 (31) 

The parameters ak in (30) are chosen according to the op-
timization method. Their number (TW-1) is limited in prac-
tice to p·TW, where 0<p≤1, and its selection depends on the 
signal processing algorithm. The following choice for the 
parameters ak  is convenient 
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Under the assumption of the Gaussian approximation of 
 from (30) (this assumption is acceptable because pre-
sents the sum of a large number of random variables), the 
following expression for the detection probability of FH 
signals in the ACD detection cell TH ·W (Appendix 2) is ob-
tained 
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where  | iE H and  | ivar H  are the mean and the 

variance of the Gaussian random variable respectively, 
under the hypothesis Hi, i=0,1 and they are given by the fol-
lowing approximate forms [6] 

 

 

 

 

2
0 0

2 2
1 0 0

4
0 0

3

4 2 4
1 0 0

0

4
0

0 0

1
/ ( )

1

1
/ 2 ( )

1

1
/ ( )

1

1 2
/ ( ) ( )

1

2 ( ) 1 4

E H N W ln
p

E H p TW S S N W N W ln
p

p
var H N W

pTW

p S
var H N W p TW N W

p N WTW

S S
p N W

N W N W

 
     

              
 

     

  
             

   
       

   
(34) 

One should emphasize that QD and QF are related to the 
probability of detection and the probability of the false 
alarm only regarding the decision in one detection cell of 
the bandwidth W, and not regarding the overall decision 
about FH signals in the bandwidth WFH.  

By applying (33) and (34), the probability of ACD detec-
tion in the cell TW, is obtained. For example, for p=1/2,  
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where 2=S/SN=S/(N0W), and the relation between 2 and 
d2/2=Es/N0 is given by (29). 

Therefore, for the ACD detection method of FH signals, 
where p=1/2, and where the overall decision about the pres-
ence of FH signals at some of the N possible frequencies 
assumes that at least one decision about the presence of the 
signal has happened, and where the false alarm assumes 

that at least once the threshold was exceeded at some of the 
N channels when there is no FH pulse present, the total 
probability of FH signal detection can be obtained on the 
basis of (22) and (23) as 
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N
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
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where QD is given by (35). 
By applying the MATLAB software package and the ob-

tained analytic expressions, the dependence of the ACD 
(p=1/2) detection probability versus EFH /N0=d2/2, or versus 
S/SN= 2, is examined for TW=100, the probabilities of the 
false alarm PF=0.01, PF=0.001, PF=0.0001 and N=256 fre-
quencies. The results are shown in Fig.8. 

From the results of the detection performances of the 
ACD detector (Fig.8) and the ML detector (Fig.5 and Fig.6) 
it can be seen that the ML detector is better for higher S/N 
ratios. For lower S/N ratios (2<10dB at TW=100) the ACD 
detector has better performances. Besides, it is important to 
emphasize that the ACD detector is much simpler than the 
ML detector and more robust regarding unknowing and 
variations of FH signal parameters, like power levels or 
frequency offsets [6]. 

 

Figure 8. Detection performances of the autocorrelation detection (p=0.5) 
of FH signal. 

Conclusion 
Optimum AL and suboptimum ML methods of FH sig-

nal detection, which use a bank of correlators as a receiver, 
have superior performances comparing to energy methods 
of detection, but they are very complex for realization. The 
ML detector has similar performances as the AL detector, 
and it is easier for implementation. Among optimum and 
suboptimum complex methods of detection, the noncoher-
ent ML detector is the simplest, with characteristics that are 
slightly worse (1dB) comparing to the coherent ML detec-
tor. However, the autocorrelation (ACD) method of detec-
tion is relatively easy for realization, and its performances 
are much better comparing to energy methods of detection, 
and somewhat worse than ML detection performances. Be-
sides, the ML detector has better detection performances 
only in the case of a high SNR, while in the case of a lower 
SNR (S/SN<10dB, at TW=100) the ACD detector has better 
performances. Also, it is important to emphasize that the 
ACD detector is more robust regarding unknowing and var-
iations of FH signal parameters, like power levels and fre-
quency offsets. 
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Appendix 1. 
Q-function, Q(x), and the complementary error function 

(coerror function), erfc(x), are defined as 
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( ) , ( )

2
u u

x x
Q x e du erfc x e du

 

       

It can be seen that ( ) 2 ( 2),erfc x Q x  

( ) (1/ 2) ( / 2)Q x erfc x  . 

The Marcum Q-function, QM(,), is defined as 
2 2

2
0( , ) ( )

x

MQ x e I x dx




  
 


   

and for >>1 and >>- it is possible to use the following 
approximation: 

1
( , )

2 2
MQ erfc

    
   

 
 

Appendix 2. 
From the detection theory of the Gaussian random varia-

ble , with the detection threshold 0, it is known that the 
probability of detection can be obtained as 

   
 

 
 

0 1
0 1

1

0 1

1

|
|

|

|1
     

2 2 |

D

E H
Q Pr H Q

var H

E H
erfc

var H






       
  

   
   

 

and the probability of the false alarm is 

   
 

 
 

0 0
0 0

0

0 0

0

|
|

|

|1
     

2 2 |

F

E H
Q Pr H Q

var H

E H
erfc

var H






       
  

   
   

 

By eliminating of 0 from these expressions it is possible 
to obtain (33). 
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Korelacione metode detekcije signala sa frekvencijskim skakanjem 
U radu je dat pregled, izloženi su osnovni principi i izvršena je analiza korelacione detekcije signala sa frekvencijskim 
skakanjem. Na bazi teorijskih rezultata za zavisnost verovatnoće detekcije od verovatnoće lažnog alarma i parametara 
signala, izvršen je grafički prikaz, analiza i poređenje performansi detekcije razmatranih korelacionih metoda. 

Ključne reči: signali sa frekvencijskim skakanjem, detekcija, presretanje, korelacione metode. 

Techniques de corrélation de la détection de signaux à saut de 
fréquence 

Les principes de base et ľanalyse de la détection de corrélation de signaux à saut de fréquence sont donnés. Les per-
formances de la détection des techniques de corrélation traitées sont présentées par la voie graphique, analysées et 
comparées suivant les résultats théoriques pour la dépendance entre la probabilité de détection et la probabilité de la 
fausse alarme et des paramètres de signaux. 

Mots-clés: signaux à saut de fréquence, détection, interception, techniques de corrélation. 
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