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List of notation and symbols 
S={s1, s2, ... ,sn} – set, domain of discourse, of 

elements s1, s2, ... , sn 
s – generic element in the set S 
P  (S) – power set of the set S, the set of 

ordinary subsets of the set S 
V – variable that can take either crisp 

values or fuzzy values 
µ – measure of belief 
µA(x) – membership function of the element 

x with the respect to the fuzzy set A 
χB – characteristic function of the crisp 

set B 
f : C → D – function f that maps elements of the 

set C onto the set D 
∧ – conjunction, and 
∨ – disjunction, or 
⇒ – implication 
{sF} – set of elements with the feature F 
P – probability 
Π – possibility 
π – possibility distribution 
n – necessity 
sup A – supremum of A , the least upper 

bound of A 
inf A – infimum of A , the greatest lower 

bound of A 
m – basic probability assignment 
Cr – credibility function 
Pl – plausibility function 
lower(Σ)   – lower approximation ( also known 

as  the positive region, pos(Σ)) of 
the set Σ 

[s]R – equivalence class of the relation R 
upper(Σ)  – upper approximation of the set Σ 
bnd(Σ)  – boundary region of the set Σ 
neg(Σ)  – negative region of the Σ 

Introduction 

A S applicability of some artificial intelligence systems 
(i.e. expert systems, neural networks, etc.), in real 

problem solving increases, it is more obvious that the 
knowledge needed for finding solutions of these problems 
is inherently uncertain. Many practical problems are per-
vaded by uncertainty [1]. Almost all information is subject 
to uncertainty. Uncertainty may arise from inaccurate or in-
complete information, from linguistic imprecision, from 
disagreement between information sources, or from an in-
sufficiently defined or ill-defined problem. Abilities to 
process uncertain information and to reason on the basis of 
insufficient knowledge are determining features of intelli-
gent behavior in an uncertain, i.e. complex and dynamical, 
environment. Those are the reasons that make uncertainty 
modeling the important research field in the domain of arti-
ficial intelligence in the last several decades and nowadays. 
Uncertainty modeling problems become important with 
arising of advanced information systems, equipped with 
some possibilities of reasoning. Hence this field is the topic 
of many research projects, conferences and papers. This 
paper points out to different types of uncertainty, and to re-
lations between them. The short review of mathematical 
formalisms used for modeling uncertain information in 
rule-based expert systems [2],[3],[4] in uncertain environ-
ments, is given, with the aim to clarify possible disagree-
ments about basic assumptions and appropriate applicabili-
ties of uncertainty models in expert systems. Disagreements 
exist in foreign [5], as well as in domestic scientific circles. 
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The difference between probability and fuzziness, ex-
pressed also in a formal mathematical manner, is shown. 
Conditions specifying applications of considered ap-
proaches to uncertainty modeling, are defined, and model-
ing of uncertainty in expert and other systems of artificial 
intelligence is thus made easier. The possibilities of further 
research work in the domain are considered. 

The following uncertainty phenomena and methods of 
their modeling in expert systems in uncertain environments 
are considered: 
– randomness, 
– fuzziness, and  
– roughness.  

These are three different cognitive processes, which exist 
each per se.  

Randomness is modeled in expert systems by using: 
– probability theory [6], [3]; 
– heuristic approximation of probability, so called cer-

tainty factors [3]; 
– the Dempster–Shafer theory of evidence [6], [16] - [22]. 

Fuzziness is modeled by using: 
– the theory of fuzzy sets (i.e. fuzzy logic) [7], [8], [9], 

[10], [11], [6]; 
– the theory of possibility [12]. 

Roughness is modeled by the theory of rough sets [23], 
[24], [25], [26]. 

In the sequel, the definitions, as well as the survey of 
the basic features of considered uncertainty types and their 
models, are given. Some other modeling formalisms, such 
as nonmonotonic logics and default reasoning, and quali-
tative versions of probability, such as the Spohn calculus 
and kappa-calculus, have not been considered here be-
cause of existing controversies about those approaches. It 
is pointed out to kinds of uncertainties which some uncer-
tainty types represent, as well as to relations between dif-
ferent uncertainty types, which makes easier the applica-
bility of uncertainty modeling in expert and other artificial 
intelligence systems.  

The starting point for uncertainty consideration can be a 
measure of belief [6]. Formally, a belief measure is defined 
on nonempty set S = {s1, s2, ..., sn}, n ∈ N, N the set of natu-
ral numbers. Let V be a variable which can take values in 
the set S. When an uncertainty exists, i.e. in situations when 
the exact value of the variable V is not known, the most that 
can be done is to try to formulate the knowledge about the 
variable V, using a convenient mathematical form. One 
such form is a measure of belief. Its convenience is in the 
fact that it can be used in representations of different types 
of uncertainty. Assume {Xn  n ∈ N} is a sequence of sets  
X1, X2,... , Xn ,  ( n = 1,2, ..., i.e. n ∈ N). 

A field of subsets of a set S ≠ ∅ is a system F  of the sub-
sets of S, containing S and ∅, and closed* under the set op-
erations union ∪ and complement ¬. (Due to commutativ-
ity, associativity and distributivity of the set operations and 
due to the existence of neutral and unity elements, the set F, 
equipped with the union ∪ and the complement ¬, is a 
Boolean algebra with respect to (these) set-theoretic opera-
tions.). The system F  is a σ-field if for each sequence {Xn  
n ∈ N} of the elements of F , the union of these elements, 
∪n∈N Xn , is an element of F . If to each set A ∈ F corre-

sponds a finite real number or +∞, i.e., if Φ  is a set func-
tion which maps F  onto a real number or +∞, it is said that 
on F a set function Φ(A) is defined 

Φ : F →  real number or +∞  

Definition 1. A belief measure on (S, F ) is a set function 
µ : F →  [0,1], such that 

µ (∅) = 0,            µ (S) = 1 (1) 

X, Y ∈ F  and X ⊆ Y implies µ (X) ≤ µ (Y) 
(monotonicity) (2) 

The belief measure sometimes is also called a general-
ized fuzzy measure [13], [10], [27]. 

Within the framework of using the belief measure to rep-
resent information about an uncertain variable V, µE can be 
interpreted as a measure associated with our belief that the 
value of V is contained in the subset E ⊂ S, i.e. as a confi-
dence that V∈ E. 

Probabilistic model of uncertainty 
Probability is a kind of a quantitative representation of 

one uncertainty type – randomness. Probability represents a 
degree of belief that a proposition is a true, or that an event 
is going to happen, and that degree is given by a number the 
value of which is between 0 and 1. In the frequentist view, 
probability of an event is the frequency of the event occur-
ring in a large number of similar trials. 

A probability can be considered from the point of view 
of the measure theory, as well [6]. 

Definition 2. A belief measure  µ  on  (S, F ) is a finitely 
additive probability if  X, Y ∈ F   and  X ∩ Y = ∅  implies µ 
(X ∪ Y) = µ (X) +µ (Y). A measure µ is a σ - additive prob-
ability (or simply probability) if its domain F  is a σ-field, 
and for each sequence {Xn  n ∈ N } of pairwise disjoint 
elements from F  (i.e. Xi  ∩ Xj = ∅ for i ≠ j), it holds 

µ (∪n ∈ N Xn) = Σn ∈ N  µ (Xn) (3) 

The basic properties of probability are [6]: 
1. Let µ  be a finitely additive probability on (S, F ). Then 

for each finite sequence X1, X2, .., Xn of pairwise disjoint 
elements of F  it holds 
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2. Let µ  be a probability on (S, F  ) and let {Xn  n ∈ N} be 
a sequence of elements of F . If the sequence is increas-
ing (i.e. Xi ⊆ Xi+1 for each i ), then  µ (∪i ∈ N Xi) = supi ∈ N 

 µ (Xi). If the sequence is decreasing (i.e. Xi ⊇ Xi+1 for 
each i ), then µ (∩i ∈ N Xi) = infi ∈ N  µ (Xi). 
Let S be finite and let F  be the set P (S), the set of all 

subsets of S, the power set of S. 
3. Each finitely additive probability on (S, F ) is σ- additive.  
4. Each probability µ on (S, F ) is uniquely given by its 

value of singletons*, i.e.:                  
if µ0: S → [0,1] is such that Σ s ∈ S µ0 (s) = 1, then a 

__________ 
*) A set S is  closed under an operation * if a result of the operation* ap-
plied on any two elements from S is again an element of S. 

__________ 
*) A singleton is an elementary event, a set of one element. 
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unique probability µ exists on (S, F ), such that µ ({s}) = 
= µ0 (s) for each s ∈ S. 
Therefore, a probability is an additive measure. In the 

probability theory, the additive measure µ is usually de-
noted as P. The basic set S consists of elementary events or 
propositions, and F  is usually taken as the power set of S, 
denoted as P, which has a ring structure (in the sense of set 
theory), i.e. it holds (¬ is negation) 

if p ∈ P, then ¬ p ∈ P (5) 

if p ∈ P and q ∈ P, then p ∧ q ∈ P (6) 

and then the basic statements can be formulated that define 
a probability in an alternative approach to the approach rep-
resented by the expressions (1–4). 

Expressions (5) and (6) state that the ring P is closed 
under operations of negation and conjunction (it is easy to 
prove that the same holds for disjunction and difference).  

Definition 3. Suppose that the set P is the power set of a 
basic set S of elementary propositions, which is called the 
basic space (set). On the set P a probability P can be de-
fined as a measure, i.e. a function P: P → [0,1], such that 

1) P(∅) = 0, where ∅ is a proposition which is always false (7) 

2) P(S) = 1, where S is a proposition which is always true (8) 

3) (∀p ∈ P, ∀q ∈ P, p ∧ q = 0)  ⇒ P(p ∨ q) =  P(p) + P(q). (9) 

Expressions (7) and (8) are expressions (1) in the case of 
a probability.  

When it holds p ∧ q = 0, the propositions p and q are 
″mutually disjoint″, since one of them is false if the other 
one is true. Based on axioms (7–9) the following conse-
quences hold: 

∀p ∈ P, P(p) + P(¬ p) = 1 
(the probabilistic law of the excluded middle) 

(10) 

and the expression (2) in the probabilistic case 

(p ⇒ q) ⇒  P(p) ≤ P(q) (11) 

Implicitly, an order relation between the propositions is 
introduced, which corresponds to the inclusion in the set in-
terpretation. 

The main form of a probabilistic reasoning in expert sys-
tems consists of using the Bayes theorem. On the basis of 
Bayes's theorem, a priori probability of the proposition, and 
probabilities of new facts, the a posteriori probability is in-
ferred (Bayesian reasoning) 

P(H|E) = 
( )* ( )

( )
P H P E H

P E
 (12) 

where 
P(H|E)– is the probability that H is true given the evi-
dence E; 
P(H)– is the probability that H is true; 
P(E|H)– is the probability of observing the evidence E 
when H is true; 
P(E)– is the probability of E.  

Bayes's theorem is used in rule-based expert systems, in 
which there is a rule of the following form 

IF E THEN H (13) 

Using expression (12), the probability of the hypothesis 
H  for the given evidence E, can be determined [3].  

In such a probabilistic calculus a proposition p and its 
negation, complement, ¬ p, are related by expression (10). 
This is intuitively acceptable in some cases. However, dif-
ficulties arise when there is no any a priori information 
about the truth of the proposition p. It looks natural to take 
P(p) = P(¬p) = 0.5: when there is no knowledge about the 
probability distribution, the symmetric truth values are 
given (0.5), i.e. a so-called principle of insufficient reason-
ing [19], is applied. But, assume there are three proposi-
tions, p1, p2, and p3, with no knowledge of their validity. 
Analogously to the case of two mutually disjoint proposi-
tions, it seems reasonable to take P(p1)=P(p2)=P(p3)=0.33... 
But, if p and  q from the previous case of two propositions, 
are  now taken as p = p1, q = p2 ∨ p3,  it holds that  P(p1) = 
= 0.5, which is not in agreement with the symmetric distri-
bution (0.33..), and that results in a contradiction. 

The probabilistic calculus demands existence of an a 
priori information. Conditional independence of data must 
be assumed. Additivity holds – the sum of probabilities that 
support a hypothesis and are against it, for a given fact, 
have to equal one. Then the probability theory offers advan-
tages of a well-founded and statistically correct method of 
inexact reasoning. An interpretation of probabilities as rela-
tive frequencies demands a massive population of data as a 
foundation of relevant statistics. The Bayes model is a good 
choice for the situation when there is a lot of information, 
but is too restrictive for the most of real situations. It is of-
ten a case in real applications that the needed conditions are 
not fulfilled, i.e. there is no previous data on probability 
distribution. (The probabilistic approach is used, for exam-
ple, in the geological expert system PROSPECTOR [3], 
[28]). Due to those reasons, the other mathematical models 
of uncertainty are introduced, among which some are gen-
eralizations, in a way, of a concept of probability. 

Certainty factors 
Certainty factors are a heuristic approximation of the 

probability.The certainty factor is added to an IF-THEN 
rule and it expresses the value of belief in the uncertain rule 

Ri: IF E THEN H (CFi) (14) 

where Ri denotes the i-th rule in a rule base of n rules, and 
CFi denotes a certainty factor of the considered rule. The 
value of belief of H given E is true, CFH,E  is 

CFH,E = CFi  

The rules of the form given by (14) are called single 
premise rules. 

The calculus of certainty factors is developed [3]. 
If the available evidence E contained in the rule's prem-

ise in the single premise rule is uncertain, and if that uncer-
tainty is described by the CF value of the premise, CFE, the 
rule has the following form 

Ri: IF E (CFE) THEN H  (CFi) (15) 

In this case, certainty factor propagation is present. Cer-
tainty factor propagation is concerned with establishing the 
value of belief in the rule's conclusion, CFH,E , when the un-
certainty of evidence in the rule's premise exists. For rule 
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(15), the value of belief in rule's conclusion is given by the 
following expression 

CFH,E = CFE ⋅CFi (16) 

where ″⋅″ is the multiplication symbol. 
The certainty factor propagation technique is used also 

when the rule base with inference chains is present. The 
characteristic of an inference chain is that the conclusion of 
some previous rule supports the premise of a current rule. A 
rule base which consists of two rules with an inference 
chain is given by the following 

R1: IF A THEN B  (CF1)  

R2: IF B THEN C  (CF2)  

The certainty theory model propagates the certainty 
value through an inference chain in rules R1 and R2 as in-
dependent probabilities 

CFC,A = CFC,B  ⋅ CFB,A (17) 

although  in  the  probability  theory,  in general,  P(C|A) ≠ 
≠ P(C|B)⋅P(B|A). 

Example 1. Suppose the following rule base is given 

R1: IF A (CFA = 0.7) THEN B  (CF1= 0.8)  

R2: IF B THEN C  (CF2= 0.9)  

The propagation of CFA = 0.7 through the rule R1 gives 
the value of belief of the conclusion B for the given A, ac-
cording to (16), CFB,A = CFA CF1 = 0.7⋅0.8 = 0.56. The fur-
ther certainty propagation, now through the rule R2, gives 
first CFB = CFB,A = 0.56, and then CFC = CFB⋅ CF2 = 
=0.56⋅0.9 = 0.504, or (according to (17)) CFC = CFC,A = 
=CFC,B·CFB,A = 0.9⋅ 0.56 = 0.504. The value of belief in 
conclusion C is 0.504. 

In the certainty factor theory a rule with more than one 
premise in IF part is interpreted either as a rule with con-
junctive premises 

Ri: IF E1 (CFE1) AND E2 (CFE2) AND ... 
... AND En (CFEn)  THEN H  (CFi) 

(18) 

or as a rule with disjunctive premises 

Ri: IF E1 (CFE1) OR E2 (CFE2) OR ... 
... OR En (CFEn)  THEN H (CFi) 

(19) 

In forming a belief in a hypothesis H, supported by con-
junctive or disjunctive rules, in the certainty factor theory 
the conditional independence of evidence is assumed. The 
certainty factor CFE of the IF part of the rule is determined 
by taking the minimum uncertainty value over the certainty 
factors of the premises in IF part, (CFEi), i = 1,..., n, in the 
case of a rule with conjunctive premises 

CFE = min[CFE1 , CFE2, ... , CFEn ] (20) 

and then the value of belief in the rule's conclusion is de-
termined by expression (16). 

The certainty factor CFE of the IF part of the rule is de-
termined by taking the maximum uncertainty value over the 
certainty factors of the premises in IF part, (CFEi), i = 1,..., n, 
in the case of a rule with disjunctive premises 

CFE = max[CFE1, CFE2, ... , CFEn ] (21) 
This policy adopted in the certainty factor theory is in 

accordance with the canons of the fuzzy set theory [7], [28]. 

Example 2. Suppose the following rule is given 

R1: IF A (CFA = 0.9) AND 

B (CF
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Definition 4. Assume S is a set, a universe of discourse, 
of objects generically denoted as s. A fuzzy set A in S, A ⊂ S, 
is the set of ordered pairs 

A = { (s, µA(s) ) |  s∈S } (22) 

specified by a grade of membership µA, which is used to as-
sociate with each element (each point) s ∈ S, its grade of 
membership to the set A, µA(s). A function µA(s) is called a 
membership function of the fuzzy set A, where µA(s) takes 
values in the unit interval [0,1]. 

In a more general case, µA(s) can take values in a par-
tially ordered set [7]. A discrete membership function is 
depicted in Fig.1, and a continuous membership function is 
depicted in Fig.2. In the case of traditional, crisp sets, the 
concept  of membership  function is equivalent to the well- 
-known concept of a characteristic function (usually de-
noted by χ : µA(s) =χA(s) ), which takes values 1, when s 
belongs to A, or 0, when s does not belongs to A. 

 

Figure 1. A discrete membership function of the fuzzy set '' approximately 1'' 

 
Figure 2. A continuous membership function of the fuzzy set '' close to 1'' 

The most important modeling tool, based on the theory 
of fuzzy sets, is a fuzzy expert system. The base elements 
of that system are fuzzy expert rules and approximate 
(fuzzy) reasoning. 

A fuzzy IF – THEN rule (fuzzy implication, fuzzy rule, 
fuzzy conditional statement) is an expert IF – THEN rule of 
the following form 

IF s is A, THEN y is B (23) 

where s and y are variables taking values in universes of 
discourse S and Y, respectively, and A and B are fuzzy sets 
in S and Y. The interpretation of fuzzy rule enables calcula-
tion of conclusions from the sequence of such rules which 
makes a rule base, that is, makes fuzzy reasoning possible. 
Fuzzy (approximate) reasoning is a technique of automated 
reasoning, which gives the procedure of getting an infer-
ence from fuzzy IF-THEN rules and known facts. 

An approach based on fuzzy logic has been used in the 
first fuzzy expert systems, implemented by Mamdani's 
group at Queen Marry College in London. Fuzzy logic con-
trollers have been developed from those expert systems. 

The theory of fuzzy sets provides a mathematical 
framework for encompassing gradualness in computer im-
plementations of reasoning. This gradualness should not 
necessarily be numeric one, it can be founded on order, on 
the mathematical concept of a lattice [7],[9]. Gradualness 

can express a similarity between propositions, levels of un-
certainty or preferential degrees.  

Relation between the probability theory and fuzzy 
logic 

Zadeh said, in the seminal paper [7], that the concept of 
fuzzy set is nonstatistical in nature: 

″ In fact, the notion of a fuzzy set is completely 
nonstatistical in nature. ″ [7, p. 340.] 

In probability theory and in the theory of fuzzy sets two 
types of uncertainty are considered: randomness, in the 
first, and fuzziness – a generalized concept of a classical 
set, in the latter. Probability deals with mutually disjoint 
facts, states, or situations. Fuzziness deals with membership 
degrees to various sets, or phenomena, which are not mutu-
ally exclusive. Membership functions may be subjective, 
i.e. not unique for all observers. Subjectivity, present in a 
description of membership functions, comes from individ-
ual differences in description of abstract concepts, and has a 
little with randomness. Hence, the subjectivity and nonran-
domness of fuzzy sets is the main difference between the 
study of fuzzy sets and probability theory, which deals with 
objective treatment of random phenomena. 

A probability is defined in a probability space (S, P, P), 
where P is a σ-field in S, and P is a probability measure, 
which maps P to [0,1] 

P: P → [0,1] (24) 

A membership function µA(s), s∈S, where A is a fuzzy 
set in S, is a measure 

µA: S → [0,1] (25) 

A probability is defined on the power set P(S) of the set 
S. A membership function µA(s) is defined on the basic set, 
the universe of discourse S. If S is a finite set, for P additiv-
ity (10) holds 

({ }) 1
s S

P s
∈

=∑  (26) 

while µA is nonadditive measure: 

( ) 1A
s S

sµ
∈

≠∑  (27) 

Probability theory is based on probabilistic logic, and the 
theory of fuzzy sets on fuzzy logic. Probability theory deals 
with a probabilistic measure, while the theory of fuzzy sets 
deals with a fuzzy measure [10].  

Example 3. A difference between a probability and a 
membership degree can be illustrated by the next example 
[11], [10], [1]: Assume S is the set of all liquids. Let A be a 
fuzzy subset of S, specified by the statement ″liquids suit-
able for drinking ″. Pure water has the membership degree 
to the set A equal to 1, wine has the membership degree to 
set A equal to 0.6, juice 0.8, brandy 0.2, and hydrochloric 
acid 0. Suppose a thirsty traveler is in a desert and finds two 
bottles with liquids. The first bottle is marked by the 
membership degree to the set of liquids suitable for dri-
nking µA = 0.92, and the second by the probability that the 
liquid is suitable for drinking P = 0.92. Which bottle the 
traveler will choose to drink from? The membership de-
gree µA = 0.92 means that in the bottle is something be-
tween mineral water and juice, what is quite acceptable. If 
the choice is the second bottle, the traveler can get pure wa-
ter, but also poison. The first bottle is an obvious choice.  
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In the foregoing example, in the terminology of the 
theory of fuzzy sets, the set S, the set of all liquids, is the 
universe of discourse. The fuzzy subset A in the set S, is 
specified by the linguistic statement ''liquids suitable for 
drinking″. Elements in the set S belong to a fuzzy set A 
with some membership degrees, with their values in the 
domain [0,1]. 

Thus, probability theory and fuzzy logic model two dif-
ferent phenomena of uncertainty, and they are complemen-
tary rather than competitive [14]. Assignment of probabili-
ties to fuzzy events can be considered – probability theory 
of fuzzy events. Zadeh in [14], points to the fact that uncer-
tainty phenomena exist, where both randomness and fuzzi-
ness are present. Namely, the fact that the theory of prob-
ability is based on bivalent logic has the consequence that 
probability theory is lacking in capability to operate with 
perception-based information, whose validity is a matter of 
degree. Such information (for example, ''The road is wide'') 
has the form of propositions drawn from a natural language, 
namely beyond the reach of existing predicate-logic-based 
techniques of meaning representation. Bivalent logic is the 
logic of measurement, while fuzzy logic is the logic of per-
ception. To enable probability theory to deal also with 
problems described using perception-based information, 
Zadeh proposes [14] to restructure probability theory by re-
placing bivalent logic on which it is based with fuzzy logic. 
The result of restructuring probability theory is a more gen-
eral and more complex probability theory, which may be 
called perception-based probability theory. In standard 
probability theory only likelihood is a matter of degree, a 
degree from a unit interval between 0 and 1. In perception-
based probability theory, everything – and especially truth 
and possibility – is, or is allowed to be, a matter of degree. 
Complexity is the price of constructing a probability theory 
which has a close rapport with pervasive imprecision, un-
certainty and ill-definedness of the real world. 

Possibility theory 
Possibility theory [12] gives the way of uncertainty 

modeling when available information is not precise and cer-
tain, but is described using fuzzy sets. Possibility theory is 
connected with the theory of fuzzy sets in such a way that 
the concept of a possibility distribution is defined as a fuzzy 
restriction which acts as an elastic constraint on the values 
that may be assigned to a variable [12]. Similarly to a prob-
ability (1 - 4), a possibility can also be considered from the 
measure theory aspect [27], [6]. 

Let A ⊂ S, where A is a crisp (traditional) set. Let V be a 
variable defined on S. To say that V takes its value in A in-
dicates that any element in A could possibly be a value of V, 
and that any element not in A cannot be a value of V. The 
statement ″the variable V takes its value in A″ can be 
viewed as inducing a possibility distribution π over the set 
S, associating with each element s in S, the possibility that s 
is a value of V 

Π (V = s) = π (s) =  
1 ,
0 .

if s A
if s A

∈
 ∉

Next, assume A is a fuzzy subset in a universe of dis-
course S = {s}, where s is a generic element in the set S. A 
fuzzy set A is specified by its membership function µA, and 
then a statement of the form '' V is A'', where V is a variable 
taking its values in S, induces a possibility distribution Π 

that makes the possibility that V takes value s to µA(s). This 
value, µA(s), represents a compatibility measure of the value 
s with A. In that way V becomes a fuzzy variable associated 
with a possibility distribution Π, in much the same manner 
as a random variable is associated with a probability distri-
bution. A fuzzy set A induces a possibility distribution that 
is equal to a membership function µA of that fuzzy set A, on 
the values of V 

Π (V = s) = π (s) = µA(s) 

A thesis advanced in [12] is that the imprecision that is 
intrinsic in natural languages is, in the main, possibilistic 
rather than probabilistic in nature. Thus, by employing the 
concept of a possibility distribution, a proposition p, in a 
natural language may be translated into a procedure, which 
computes the possibility distribution of a set of attributes, 
implied by p. In such a way, in [12] an improvement has 
been made with respect to the results of Wiener and Shan-
non: they considered that information was intrinsically sta-
tistical in nature. The improvement is related to the fact that 
when the main concern is with the meaning of information, 
the proper framework for information analysis is possibilis-
tic rather than probabilistic. 

As a probability (1-4), a possibility can also be consid-
ered from the point of view of the measure theory (1), (2), 
(28), (29), [6]: 

Definition 5.  Let F  be equal to the power set of the set 
S:F = P (S). A possibility on S is a belief measure Π:F  → 
→[0,1] such that for any system {Xαα ∈ I } of the subsets 
of S (I is any non-empty index set) it holds 

sup ( )
a II

X Xα α
α

Π Π
∈∈

  = 
 ∪  (28) 

A possibility Π (A), A ⊂ S, s ∈ S, indicates the possibility 
that the value of the variable V, and that value is s, lies in 
the subset A. 

A necessity  is a belief measure n : F  → [0,1] such that 
for any {Xα

 

α ∈ I } as above 

n  
  n  inf

II
Xα αα ∈∈

=
 ∩  ( )Xα (29) 

The properties of possibility are given by the following 
statements [6]: 
1. If Π  is a possibility on S then the function n , defined 

as n  (X) = 1 - Π(S−X), is a necessity measure on S. 
Conversely, each necessity n  defines a possibility 
Π(X)= = 1 - n  (S−X). 

2. Each possibility is uniquely determined by its values on 
singletons: if π :  S → [0,1] is a normalized fuzzy subset 
of S (i.e. π (si) = µ ({si}) and  sup s∈S π (s) = 1), then 

Π(X) = sup s ∈X π (s) (30) 

is a possibility. (And, of course, if Π  is a possibility and 
π (s) = Π ({s}), then π  is a normalized fuzzy subset of S 
determining Π  by (30).) 
From the foregoing exposition it is obvious that the pos-

sibility theory has been derived from the theory of fuzzy 
sets. A possibility function is connected with the fuzzy set 
which represents the linguistic variable. For example, if a 
variable V corresponds to the value of a number, and it is 
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known that the value of a number, i.e. the value of a vari-
able V is ″approximately 1″, then the fuzzy set ″approxi-
mately 1″ induces the possibility distribution in such a way 
that the membership degree of an element becomes the pos-
sibility of that element. 

A fuzzy set and a possibility distribution have a common 
mathematical expression. But, there is a difference between 
them: a fuzzy set A can be viewed as a fuzzy value that is 
assigned to a variable. Viewed as a possibility restriction, A 
is the fuzzy set of nonfuzzy values that can be possibly as-
signed to a variable V. 

Possibility and probability 
Concepts of a probability distribution and a possibility 

distribution are different [12]. Possibility measures are 
max-decomposable for the disjunction of events (28), [12], 
[10], while the probability measures are additive (for mutu-
ally exclusive events). Necessity measures are min-deco-
mposable for the conjunction (29). Possibility (respectively, 
necessity) measures are not compositional for conjunction 
(respectively, disjunction), eg.  

n  (A∪ B) ≥ max(n  ( A), n  ( B))  (31)

(One may be (somewhat) certain of A or B without being 
certain of A or being certain of B, at all.) 

In possibility theory, the assessment of uncertainty of A 
requires two numbers, namely Π(A) and n  (A) = 1 - Π( A ) 
which are only weakly related, while the probability of A 
completely determines the probability of the complemen-
tary event A . Also, possibility (and necessity) measures 
only require an ordered scale for grading uncertainty, since 
the possibility theory only uses max, min, and an order-
reversing operations. This is in agreement with a rather 
qualitative view of uncertainty. 

Applications of fuzzy sets 
The ability of fuzzy sets and possibility theory to model 

gradual features or elastic constraints the satisfaction of 
which is a matter of degree, as well as information per-
vaded with imprecision and uncertainty, makes fuzzy sets 
useful in a great variety of applications. The most popular 
area of applications is fuzzy control. The fuzzy set method-
ology can be used in the area of information systems, espe-
cially in information retrieval and database management. If 
the fuzzy methodology is used, then these systems may al-
low for the presence of imprecise, uncertain, or vague in-
formation in the data base. Problems of fulfillment of elas-
tic constraints and optimization make a class of applications 
(eg. [30]). Besides that, fuzzy logic, in the context of artifi-
cial intelligence, is applied in the following domains:  
– knowledge representation;  
– approximate reasoning; 
– numerical function coding and approximating, in data 

mining [29]; 
– pattern recognition and classification; 
– multivalued logics; 
– processing and analysis of digitalized pictures repre-

sented by levels of gray. 

Dempster-Shafer theory of evidence 
The most important objects in the Dempster-Shafer the-

ory of evidence are Shafer’s belief functions. They are used 
to model and quantify subjective credibility induced in an 
observer by evidence. Pieces of evidence consist of internal 

(objective) evidence (facts) and of external evidence (testi-
monies). Using Dempster’s work on lower and upper prob-
abilities [15], Shafer gave [16] a reinterpretation of that 
work. In that reinterpretation, Dempster’s ″lower probabili-
ties″ are identified as cognitive probabilities or degrees of 
credibility, the rule of combination of such degrees of 
credibility is taken as fundamental, and the idea that de-
grees of credibility arise as lower bounds over classes of 
Bayesian probabilities is abandoned. 

The originality and the power of Shafer’s model is that it 
does not evoke the principle of insufficient reason or an ar-
gument of symmetry. In the situations which would give 
the contradiction, Shafer’s model leaves the total mass of 
belief allocated to the proposition, without splitting it be-
tween the components of the proposition [19]. 

A fuzzy measure µ with respect to a variable V (a meas-
ure defined by expressions (1) and (2)), provides a descrip-
tion of a knowledge about the variable. When using a belief 
measure, although there exists some uncertainty with re-
spect to the actual value of the variable, it is assumed that 
there exists no uncertainty with respect to the knowledge of 
the description of the uncertainty. But, the situation is pos-
sible in which there exists only partial information with the 
respect to the underlying belief measure, for example that 
µ(A) ∈ [a,b]. 

The Dempster-Shafer theory of evidence is an uncer-
tainty modeling tool used as an alternative to the probability 
theory [6], [20]. The main application is in cases when 
there is no enough information that should be sufficient for 
using more precise apparatus of probability theory. The 
main idea is still probabilistic. Specifically, assume S is the 
basic set of elementary propositions, and P  the power set 
of S. A function g(.) is introduced on P which fulfills the 
axioms (1) and (2) (the point in g(.) corresponds to the vari-
able of the observed universe of discourse). If p and q de-
note propositions, the elements from the set P, P  can be 
treated as Boole’s algebra of propositions. The set notation 
is freely combined with the proposition notation, and then 
expressions (1) and (2) are 

g(∅) = 0 

 

 

(32) 

g(S) = 1 (33) 

if p ⊂ q (p ⇒ q = 1) then g(p) ≤ g(q); 
(monotonicity)

(34) 

where  ∅  is an empty set, S  is the whole (basic) set), and 
″p ⇒ q = 1″ (tautology), means: ″it is true that p implies q 
in any interpretation″. 

Two standard functions that satisfy those axioms are 
Shafer’s functions of credibility and plausibility. Previ-
ously, the function m, called a basic probability assignment, 
is introduced [6].  

Definition 6. Let V be a variable that takes values in the 
set S. Let P  be the power set of S. The basic probability as-
signment is a function m: P  → [0,1], which fulfills the fol-
lowing conditions: 

m(∅) = 0 (35) 

P

( ) 1
p

m p
∈

=∑  (36) 

The basic probability assignment m defines a probability 
distribution on the power set P. 
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If there is a block of insufficiently certain information, it 
is possible to allocate probabilities to propositions from P, 
which are not mutually disjoint (in the basic set S elements 
are always mutually disjoint). The propositions p such that 
m(p) > 0 are called  focal propositions (because information 
is based, i.e. ″focused″on them). Certain information is rep-
resented by a unique focal proposition p0 , m(p0) = 1. The 
value of m(p) is the probability that the evidence is pre-
cisely and entirely described by the proposition p. Every 
basic probability m(p), p ∈ P , supports also every proposi-
tion q that is implied by the proposition p. 

Definition 7. Credibility of a proposition q, Cr(q), is a 
sum of all basic probability assignments of propositions p 
which imply the proposition q (i.e. of all more specific pro-
positions p which are contained in the proposition q, p ⊂ q) 

∀q∈ P , Cr(q) = ( )
p q

m p
⇒
∑   

  

  

  

  

 

 

 

(37)

The credibility function Cr(.), Cr:P → [0,1] has a com-
plementary function, the plausibility function Pl(.): Pl: P 
→[0,1] 

∀p∈ P ,  Pl(p) = 1 – Cr(¬p) (38)

The plausibility of a proposition q is a sum of amounts 
of belief that are allocated to the proposition p and that are 
not in contradiction with the proposition q, i.e. which do not 
imply ¬q. 

Definition 8. The plausibility function Pl(.) is a sum of 
all basic probability assignments of the propositions p for 
which is fulfilled ¬(p ⇒ ¬q), i.e. p ∩ q ≠∅ 

∀q∈ P, Pl(q) =
( )

( )
p q

m p
¬ ⇒¬

∑ (39)

that is, the degree of plausibility of some event q, Pl(q), is 
the sum of the basic probability assignments of the events p 
for which is fulfilled p ∩ q ≠∅. 

Hence, it holds 

∀p∈ P ,  Cr(p) + Cr(¬p) ≤ 1 (40)

∀p∈ P ,  Pl(p) + Pl(¬p) ≥1 (41)

∀p∈ P ,  Cr(p) ≤ Pl(p) (42)

Both functions are, by definition, belief functions, they 
fulfill expressions (32-34). Intuitively, credibility Cr(p) can 
be interpreted as a degree of minimum or necessary prob-
abilistic support, P(p), to a proposition p, defined on the 
base of the current, incomplete, knowledge. Plausibility 
Pl(p) can be interpreted as a degree of maximum or poten-
tial support, P(p), to a proposition p. 

Two special cases of credibility and plausibility func-
tions are especially interesting, and are specified by the 
structure of focal elements. These cases are: 
1. If every focal proposition p is such that p does not imply 

q, then p and q are mutually disjoint, ∀q, p∈ P . In that 
case the expression for credibility and plausibility are in 
fact the expressions dealing with probability. 

2. If the set of focal propositions can be ordered, then the 
function Pl is a possibility measure and conversely. In 
this case Cr is also a necessity measure.  
Different pieces of evidence are combined by the appli-

cation of Dempster’s rule of combination on the basic prob-

ability assignments. The rule is an associative and commu-
tative binary operation defined on the set S of all basic 
probability assignments. For two basic probability assign-
ments, m1 and m2 , the combined basic probability assign-
ment m12 is given as 

m12(C) = 1 2( ( ) ( )) /(1 )
A B C

m A m B d
∧ =

∗ −∑ (43) 

where  

d = 1 2( ( ) ( ))
A B

m A m B
∧ =∅

∗∑ (44) 

and A, B, C ∈ P. The quantity d is the measure of dis-
agreement of two sources, and is used as a renormalization 
factor.  

Since the subset of possibilistic basic probability as-
signments is not closed with respect to Dempster's rule, the 
possibilistic rule of combination has been introduced. For 
this rule the mentioned subset is closed 

π12 (s) = min(π1 (s), π2 (s))/ (1-d) (45) 

where 

d =  1 2sup min( ( ), ( ))
s S

s sπ π
∈

(46) 

For the possibilistic rule of combination, idempotency 
holds, and that is not case for Dempster's rule or for the 
multiplication of probabilities. In the case of the possibilis-
tic rule, information sources can be dependent.  

Dempster-Shafer’s belief functions provide a model for 
quantifying a degree of belief that the proposition is true. 
The model is promising for the development of expert sys-
tems that need to handle uncertainty. Computer implemen-
tations have shown that Dempster-Shafer’s approach to un-
certainty modeling demands a lot of input data, so computer 
resources demands are relatively significant [22]. (This ap-
proach to uncertainty modeling is used, for example, in the 
diagnostic expert system GERTS [22]). 

Roughness 
The theory of rough sets was originated by Zdzislaw 

Pawlak in the early 1980s as a result of a long-term pro-
gram of fundamental research on logical properties of in-
formation systems [23]. The theory is concerned with the 
classificatory analysis of imprecise, uncertain or incomplete 
information or knowledge, expressed in terms of data ac-
quired from experience. The primary notions of the theory 
of rough sets are [24]: the approximation space and lower 
and upper approximations of a set. The approximation 
space is a classification of the domain of interest into dis-
joint categories. The classification formally represents the 
knowledge about the domain, i.e. the knowledge is under-
stood as an ability to characterize all classes of the classifi-
cation, for example, in terms of features of objects belong-
ing to the domain. Objects belonging to the same category 
are not distinguishable, which means that their membership 
status with respect to an arbitrary subset of the domain may 
not always be clearly definable. This fact leads to the defi-
nition of a set in terms of lower and upper approximations. 
The lower approximation is a description of the domain ob-
jects which are known with certainty to belong to the subset 
of interest. The upper approximation is a description of the 
objects which possibly belong to the subset. The negative 
region is made of those domain objects which are known 
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with certainty not to belong to the subset of interest. Any 
subset defined through its lower and upper approximation is 
called a rough set. 

The previous exposition can be formalized: assume that 
a domain, a set S of objects, a set of object attributes, AT, a 
set of values, VAL, and a function f : S × AT → VAL, (that 
can be given by a table) are given. In that way each object 
from S is described by the values of its attributes. Then, an 
equivalence relation (called also an indiscernibility rela-
tion) R(A) is defined, where A ⊂ AT. 

Definition 9. If, for any two elements si , sj ∈ S  

si R(A) sj  ⇔  f (si , a) = f (sj , a),  ∀a ∈ A, i ≠ j  

  

  

 

  

(47)

then si and sj are indiscernible elements with respect to the 
attributes in A. 

The set S is partitioned, using the relation R(A), into 
equivalence classes. The pair (S, R) forms an approxima-
tion space with which the arbitrary subsets of S referred to 
as concepts are approximated. A concept is a subset of the 
set S of all objects with the same value of the function f. For 
a given concept Σ ⊂ S, that subset can be approximated by 
unions of various equivalence classes: by the lower ap-
proximation of the set Σ, i.e. by the union of all those 
equivalence classes in which the set S is partitioned using 
the relation R(A), and that are the subsets of Σ, or by the 
upper approximation of the set Σ, i.e. by the union of all 
those equivalence classes produced by the relation R(A), 
the intersection of which with the set Σ is not the empty set. 

Definition 10. The lower approximation of the set Σ, 
lower(Σ), (also known as the positive region, pos(Σ)) is de-
fined by the following expression 

lower(Σ) = pos(Σ)  = {s ∈ S | [s]R ⊂ Σ} = 
[ ]
U

Σ⊂Rs
s (48)

where [s]R  denotes the equivalence class of the relation R 
that contains the elements from the set S with the generic 
description s.   

Definition 11. The upper approximation of the set Σ, 
upper(Σ), is defined by the following expression 

upper(Σ) = {s ∈ S | [s]R ∩ Σ ≠ 0}  =
[ ]

U
∅≠∩ΣRs
s (49)

where [s]R  is as in DefinoDefin  wiwi 
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A number of practical application of this approach have 
been reported in the literature [26], in areas as medicine, 
drug research, process control, and others. One of the ad-
vantages of the theory of rough sets is that programs im-
plementing its methods may easily run on parallel com-
puters. An approach that uses the rough set theory is im-
plemented in the empirical learning system called LERS 
(Learning from Examples based on Rough Sets). The LERS 
has been used for the development of rule-based expert sys-
tems applied on the space station Freedom [26]. 

Applicability survey of the considered uncertainty 
models 

On the basis of the previous exposition of different types 
of uncertainty, in the following table, Table 2, suggestions 
are given on applicability of the considered uncertainty 
models:  

Table 2. Applicability of uncertainty models 

 ES L DM DR Cl FA PP 
P + + + + +   

CF +       
F + + + + + + + 

Po + +      
DS + +      
R + + + + + + + 

The symbols in Table 2 are: P-probability, CF- certainty 
factors, F-fuzziness, Po – possibility, DS- Dempster-Shafer, 
R-roughness, ES-expert systems, L-learning, DM-data min-
ing, DR- data reduction, Cl-classification, FA- function ap-
proximation, PP-picture processing. 

The starting point for a decision about the uncertainty 
modeling formalism in an application problem is the set of 
available data and the kind of uncertainty seen in those 
data: if the source of uncertainty is a linguistical uncer-
tainty, then the applied formalism should be the one of 
fuzziness, which possesses the possibility of processing that 
kind of uncertainty. In the expert system application con-
text, the quality of a reasoning model inherent to the uncer-
tainty should be considered as well. Practical issues of 
knowledge elicitation and representation from given data 
using the uncertainty model, are also important, as well as 
the applicability of the uncertainty paradigm in the deci-
sion-making process. 

Conclusion 
In the paper it is pointed to three different types of 

uncertainty. The relationship between those uncertainty 
types has been shown. The short survey of uncertainty 
modeling formalisms applied in expert systems is given. 
The definitions and the survey of the basic features of the 
basic uncertainty types are given: for randomness 
(probability, certainty factors, Dempster-Shafer's theory), 
for fuzziness (fuzzy set theory, possibility theory), and for 
roughness (the theory of rough sets). Some others modeling 
formalisms, such as nonmonotonic logics and default 
reasoning, and qualitative versions of probability, such as 
the Spohn calculus and kappa-calculus, have not been 
considered here due to controversies about these 
approaches. The central point in the exposition is the notion 
of the belief measure, and that notion can be used for 
unified uncertainty modeling in cases of randomness and 
fuzziness. Roughness is defined on the basis, not of the 
function, but of characteristic sets: the classification region, 

the classification region, the lower and the upper approxi-
mations. The difference between probability and fu-ziess, 
expressed also in a formal mathematical manner, is shown. 
The discussed formalisms of uncertainty modeling are not 
concurrent, but complementary, they describe different 
types of uncertainty.  

The conditions have been defined for the application of 
the discussed approaches to uncertainty modeling, which 
makes easier the application of that modeling in expert and 
other artificial intelligence systems. Probability theory can 
be viewed as a generalization of classical propositional 
logic that is useful when the truth of particular proposition 
is uncertain. The main form of probabilistic inference is to 
use Bayes's theorem to go from a prior probability on a 
proposition to a posterior probability conditioned on a new 
evidence. A prior probability distribution must be given 
over the propositions of interest. The principle of insuffi-
cient reasoning should be used to assign these initial (prior) 
probabilities. Probability is mathematically well-founded, 
precise, but requests a large data sample for correct results. 

Fuzzy sets and possibility theory are useful in applica-
tions characterized by existence of gradual properties of ob-
jects, soft constraints the satisfaction of which is a matter of 
degree, as well as information pervaded with imprecision 
and uncertainty. Fuzzy approach is used when there is a 
need for models capable of handling the kind of knowledge 
that humans manipulate with (i.e. ill-defined classes, 
classes with imprecisely located boundaries, classes with 
gradual membership and non-probabilistic uncertainty, 
vague predicates, imprecise or uncertain information, ex-
pert rules pervaded with vagueness or exceptions). Also, 
the fuzzy approach is used when a tool is needed for repre-
senting and reasoning with the available information in a 
manner similar to the way humans express knowledge and 
summarize data. 

When there is no any preliminary or additional informa-
tion about data, such as probability distribution in statistics, 
basic probability assignments in the Dempster-Shafer the-
ory, or grade of membership or the value of possibility in 
the fuzzy set theory, the rough set theory may be used. It 
uses only information given by the operationalized data, 
and does not rely on other model assumptions. Imprecision 
is expressed by quantitative concepts (approximations). The 
rough set theory requests that granularity of the domain of 
interest can be expressed by partitions and their associated 
relations on the set of objects. 

Practical reasoning requires some schemes for represent-
ing uncertainty. Many real-world applications of probabilis-
tic methods exist, and fuzzy logic and the rough sets theory 
have, notable success as well. Each method has its merits, 
and may be suitable for practical applications. 

Reports in references and some practical experience [30] 
show that implementations of uncertainty models using cer-
tainty factors and fuzziness are efficient, with linear evalua-
tion time. Probabilistic reasoning is a nondeterministic 
polynomial, i.e. potentially inapplicable for massive data. 
The computer implementations of Dempster-Shafer's model 
are more complex than those of a simple probabilistic 
model. Dempster-Shafer's model requests massive input 
data, demands for computer resources are considerable. 

Abilities to process uncertain information and to reason 
on the basis of insufficient knowledge are determining fea-
tures of intelligent behavior in an uncertain, i.e. complex 
and dynamical, environment. The uncertainty modeling is 
the important research field in the domain of expert sys-
tems.  
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In the area of uncertainty modeling there are many re-
search problems, which remain to be solved, either in the 
formal-mathematical part of the area, or in its aspects re-
lated to applications. Many theoretical problems still await 
proper clarification especially in the areas fuzzy set theory 
and the theory of rough sets.  

The possibilities of further research work exist, either in 
connection with some type of uncertainty, or in connection 
with those uncertainty phenomena in which more types of 
uncertainty are present. This research work could encom-
pass, for example, the restructuring of probability theory by 
replacing bivalent logic on which it is based with fuzzy 
logic. The result should be a more general and more com-
plex probability theory, perception-based probability the-
ory, capable to deal with problems that in their description 
contain information based on perception. Besides that, this 
research work should encompass open problems from the 
theory of fuzzy sets, for example the problem of choosing 
operators in connection with mathematical foundations of 
fuzzy logic, various problems of fuzzy logic applications in 
medicine, control, with databases, in search machines on 
the Internet, and many other problems. Fuzzy controllers 
are a very successful area of applications of fuzzy logic. 
Rough controllers, i.e. controllers based on the rough set 
theory, and even probabilistic controllers, i.e. controllers 
based on probability theory, seem to be very promising ar-
eas of applications. 
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Pojavni oblici neizvesnosti i formalizmi njihovog modeliranja u 
ekspertskim sistemima 

U radu je ukazano na različite pojavne oblike neizvesnosti i na odnose između njih. Dat je kratak pregled mate-
matičkih formalizama modeliranja neizvesnosti u ekspertskim sistemima. Pokazana je razlika, iskazana i formalno-
matematički, između verovatnoće i rasplinutosti. Definisani su uslovi koji određuju primenu pojedinih razmatranih 
pristupa modeliranju, čime se olakšava primenljivost modeliranja neizvesnosti u ekspertskim i drugim sistemima 
veštačke inteligencije. Razmatrane su mogućnosti daljeg istraživačkog rada u tretiranoj oblasti. 

Ključne reči: računarska tehnika, veštačka inteligencija, ekspertski sistemi, neizvesnost, rasplinuta logika, verovat-
noća, teorija grubih skupova. 

Phénomènes d'incertitude et les formalismes de leur modélisation 
chez les systèmes experts 

Les phénomènes différentes ďincertitude et leurs relations mutuelles sont traitées. Les formalismes mathématiques de 
leur modélisation chez les systèmes experts sont brièvement donnés. La différence entre la probabilité et le flou, ex-
primée en termes formels et mathématiques, est démontrée. Les conditions déterminant ľapplication de quelques ap-
proches à la modélisation sont définies, ce qui facilite ľapplicabilité de ľincertitude chez les systèmes experts et ďau-
tres systèmes de ľintelligence artificielle. Les possibilités des recherches plus approfondies dans ce domaine sont con-
siderées. 

Mots-clés: informatique, intelligence artificielle, systèmes experts, incertitude, logique floue, probabilité, théorie des 
ensembles rudes. 
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