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List of notation and symbols

. .S, — set, domain of discourse, of

elements sy, s9, ... , S,

— generic element in the set S

— power set of the set S, the set of
ordinary subsets of the set S

— variable that can take either crisp
values or fuzzy values

— measure of belief

— membership function of the element
x with the respect to the fuzzy set 4

— characteristic function of the crisp
set B

— function f'that maps elements of the
set C onto the set D

— conjunction, and

— disjunction, or

— implication

— set of elements with the feature '

— probability

— possibility

— possibility distribution

— necessity

— supremum of 4 , the least upper
bound of 4

— infimum of 4 , the greatest lower
bound of 4

— basic probability assignment

— credibility function

— plausibility function

— lower approximation ( also known
as the positive region, pos(X)) of
the set

[s]z — equivalence class of the relation R
upper(Z) — upper approximation of the set X
bnd(%) — boundary region of the set =
neg(X) — negative region of the £
Introduction

S applicability of some artificial intelligence systems

(i.e. expert systems, neural networks, etc.), in real
problem solving increases, it is more obvious that the
knowledge needed for finding solutions of these problems
is inherently uncertain. Many practical problems are per-
vaded by uncertainty [1]. Almost all information is subject
to uncertainty. Uncertainty may arise from inaccurate or in-
complete information, from linguistic imprecision, from
disagreement between information sources, or from an in-
sufficiently defined or ill-defined problem. Abilities to
process uncertain information and to reason on the basis of
insufficient knowledge are determining features of intelli-
gent behavior in an uncertain, i.e. complex and dynamical,
environment. Those are the reasons that make uncertainty
modeling the important research field in the domain of arti-
ficial intelligence in the last several decades and nowadays.
Uncertainty modeling problems become important with
arising of advanced information systems, equipped with
some possibilities of reasoning. Hence this field is the topic
of many research projects, conferences and papers. This
paper points out to different types of uncertainty, and to re-
lations between them. The short review of mathematical
formalisms used for modeling uncertain information in
rule-based expert systems [2],[3],[4] in uncertain environ-
ments, is given, with the aim to clarify possible disagree-
ments about basic assumptions and appropriate applicabili-
ties of uncertainty models in expert systems. Disagreements
exist in foreign [5], as well as in domestic scientific circles.
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The difference between probability and fuzziness, ex-
pressed also in a formal mathematical manner, is shown.
Conditions specifying applications of considered ap-
proaches to uncertainty modeling, are defined, and model-
ing of uncertainty in expert and other systems of artificial
intelligence is thus made easier. The possibilities of further
research work in the domain are considered.

The following uncertainty phenomena and methods of
their modeling in expert systems in uncertain environments
are considered:

- randomness,
- fuzziness, and

— roughness.

These are three different cognitive processes, which exist
each per se.

Randomness is modeled in expert systems by using:

— probability theory [6], [3];
— heuristic approximation of probability, so called cer-

tainty factors [3];

- the Dempster—Shafer theory of evidence [6], [16] - [22].

Fuzziness is modeled by using:

— the theory of fuzzy sets (i.e. fuzzy logic) [7], [8], [9],

[10], [11], [6];

— the theory of possibility [12].

Roughness is modeled by the theory of rough sets [23],
[24], [25], [26].

In the sequel, the definitions, as well as the survey of
the basic features of considered uncertainty types and their
models, are given. Some other modeling formalisms, such
as nonmonotonic logics and default reasoning, and quali-
tative versions of probability, such as the Spohn calculus
and kappa-calculus, have not been considered here be-
cause of existing controversies about those approaches. It
is pointed out to kinds of uncertainties which some uncer-
tainty types represent, as well as to relations between dif-
ferent uncertainty types, which makes easier the applica-
bility of uncertainty modeling in expert and other artificial
intelligence systems.

The starting point for uncertainty consideration can be a
measure of belief [6]. Formally, a belief measure is defined
on nonempty set S = {sy, 52, ..., S,}, n € N, N the set of natu-
ral numbers. Let V' be a variable which can take values in
the set S. When an uncertainty exists, i.e. in situations when
the exact value of the variable V is not known, the most that
can be done is to try to formulate the knowledge about the
variable V, using a convenient mathematical form. One
such form is a measure of belief. Its convenience is in the
fact that it can be used in representations of different types
of uncertainty. Assume {X, | ne N} is a sequence of sets
X],Xz,... ,Xn, (i’l = 1,2, ceey ie.ne N)

A field of subsets of a set S # J is a system .F of the sub-
sets of S, containing S and &, and closed* under the set op-
erations union U and complement —. (Due to commutativ-
ity, associativity and distributivity of the set operations and
due to the existence of neutral and unity elements, the set ,

equipped with the union U and the complement —, is a
Boolean algebra with respect to (these) set-theoretic opera-

tions.). The system .5 is a o-field if for each sequence {.X, |
n € N} of the elements of .5, the union of these elements,
Unen X, , 1s an element of . If to each set A € ¥ corre-

*)

A set Sis closed under an operation * if a result of the operation* ap-
plied on any two elements from S is again an element of S.

sponds a finite real number or +o, i.e., if @ is a set func-
tion which maps ¥ onto a real number or +oo, it is said that
on Ja set function @(A4) is defined

@ : F— real number or +oo

Definition 1. A belief measure on (S, ) is a set function
M F— [0,1], such that

H@)=0,  uE)=1 (1)
X,Ye ¥ and X< Yimplies £ (X) < u (Y) ?)
(monotonicity)

The belief measure sometimes is also called a general-
ized fuzzy measure [13], [10], [27].

Within the framework of using the belief measure to rep-
resent information about an uncertain variable V, g can be
interpreted as a measure associated with our belief that the
value of V is contained in the subset £ — S, i.e. as a confi-
dence that Ve E.

Probabilistic model of uncertainty

Probability is a kind of a quantitative representation of
one uncertainty type — randomness. Probability represents a
degree of belief that a proposition is a true, or that an event
is going to happen, and that degree is given by a number the
value of which is between 0 and 1. In the frequentist view,
probability of an event is the frequency of the event occur-
ring in a large number of similar trials.

A probability can be considered from the point of view
of the measure theory, as well [6].

Definition 2. A belief measure ¢ on (S, %) is a finitely
additive probability if X, Y e 5 and XN Y= implies i
XUY)=puX) +u(Y). Ameasure yis a o - additive prob-
ability (or simply probability) if its domain . is a o-field,
and for each sequence {X, | nenN } of pairwise disjoint
elements from ¥ (i.e. X; N X;= & for i #)), it holds

/-I(UneNXn)zzneN /—l()(n) (3)

The basic properties of probability are [6]:

1. Let 1 be a finitely additive probability on (S, .5). Then
for each finite sequence X, X5, .., X, of pairwise disjoint
elements of . it holds

u[qu =3 X)) @

2. Let u be a probability on (S, 5 ) and let {X, | ne N} be
a sequence of elements of . If the sequence is increas-
ing (i.e. X; € X1 for each i), then g (U;c yX;) =sup; ey
u (X). If the sequence is decreasing (i.e. X; o X4 for
each i )9 then H (mi € N/YI) = lnfz eN H (/Yl)

Let S be finite and let 5 be the set P (S), the set of all

subsets of S, the power set of S.

3. Each finitely additive probability on (S, .¥) is o- additive.

4. Each probability g on (S, ¥ ) is uniquely given by its
value of singletons®, ie.:
if 1y: S — [0,1] is such that X ; . 5 4 (s) = 1, then a

#) A singleton is an elementary event, a set of one element.
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unique probability u exists on (S, ), such that u ({s}) =

= 1 (s) for each s € S.

Therefore, a probability is an additive measure. In the
probability theory, the additive measure w is usually de-
noted as P. The basic set S consists of elementary events or
propositions, and ¥ is usually taken as the power set of S,
denoted as P, which has a ring structure (in the sense of set
theory), i.e. it holds (— is negation)

ifpe P, then—pe P (5)

ifpe Pandge P,thenpnrge P (6)

and then the basic statements can be formulated that define
a probability in an alternative approach to the approach rep-
resented by the expressions (1-4).

Expressions (5) and (6) state that the ring P is closed
under operations of negation and conjunction (it is easy to
prove that the same holds for disjunction and difference).

Definition 3. Suppose that the set P is the power set of a
basic set S of elementary propositions, which is called the
basic space (set). On the set P a probability P can be de-

fined as a measure, i.e. a function P: P — [0,1], such that

1) P(D) = 0, where  is a proposition which is always false  (7)

2) P(S) = 1, where S is a proposition which is always true ®)

)(VpeP.VgeP,pnrg=0) = Ppvg)= Pp)+Pq. (9)

Expressions (7) and (8) are expressions (1) in the case of
a probability.

When it holds p A ¢ = 0, the propositions p and g are
"mutually disjoint”, since one of them is false if the other
one is true. Based on axioms (7-9) the following conse-
quences hold:

Vp e P, P(p)+ P(—p)=1

10
(the probabilistic law of the excluded middle) (10)

and the expression (2) in the probabilistic case

(»=q) = Pp)<Pq) an

Implicitly, an order relation between the propositions is
introduced, which corresponds to the inclusion in the set in-
terpretation.

The main form of a probabilistic reasoning in expert sys-
tems consists of using the Bayes theorem. On the basis of
Bayes's theorem, a priori probability of the proposition, and
probabilities of new facts, the a posteriori probability is in-
ferred (Bayesian reasoning)

P(H)*P(E|H)

P(HIE) = P(E)

(12)
where

P(H|E)- is the probability that H is true given the evi-
dence E;

P(H)- is the probability that H is true;

P(E|H)- is the probability of observing the evidence £
when H is true;

P(E)- is the probability of £.

Bayes's theorem is used in rule-based expert systems, in
which there is a rule of the following form

IF E THEN H (13)

Using expression (12), the probability of the hypothesis
H for the given evidence E, can be determined [3].

In such a probabilistic calculus a proposition p and its
negation, complement, — p, are related by expression (10).
This is intuitively acceptable in some cases. However, dif-
ficulties arise when there is no any a priori information
about the truth of the proposition p. It looks natural to take
P(p) = P(—p) = 0.5: when there is no knowledge about the
probability distribution, the symmetric truth values are
given (0.5), i.e. a so-called principle of insufficient reason-
ing [19], is applied. But, assume there are three proposi-
tions, pi, p,, and ps;, with no knowledge of their validity.
Analogously to the case of two mutually disjoint proposi-
tions, it seems reasonable to take P(p,)=P(p,)=P(p;)=0.33...
But, if p and ¢ from the previous case of two propositions,
are now taken as p = py, ¢ = p, Vv p3, it holds that P(p,) =
= 0.5, which is not in agreement with the symmetric distri-
bution (0.33..), and that results in a contradiction.

The probabilistic calculus demands existence of an a
priori information. Conditional independence of data must
be assumed. Additivity holds — the sum of probabilities that
support a hypothesis and are against it, for a given fact,
have to equal one. Then the probability theory offers advan-
tages of a well-founded and statistically correct method of
inexact reasoning. An interpretation of probabilities as rela-
tive frequencies demands a massive population of data as a
foundation of relevant statistics. The Bayes model is a good
choice for the situation when there is a lot of information,
but is too restrictive for the most of real situations. It is of-
ten a case in real applications that the needed conditions are
not fulfilled, i.e. there is no previous data on probability
distribution. (The probabilistic approach is used, for exam-
ple, in the geological expert system PROSPECTOR [3],
[28]). Due to those reasons, the other mathematical models
of uncertainty are introduced, among which some are gen-
eralizations, in a way, of a concept of probability.

Certainty factors

Certainty factors are a heuristic approximation of the
probability. The certainty factor is added to an IF-THEN
rule and it expresses the value of belief in the uncertain rule

R;: IF E THEN H (CF) (14)

where R; denotes the i-th rule in a rule base of # rules, and
CF,; denotes a certainty factor of the considered rule. The
value of belief of H given E is true, CFy is

CFH’E = CF,

The rules of the form given by (14) are called single
premise rules.

The calculus of certainty factors is developed [3].

If the available evidence E contained in the rule's prem-
ise in the single premise rule is uncertain, and if that uncer-
tainty is described by the CF value of the premise, CF, the
rule has the following form

R;: IF E (CF;) THEN H (CF) (15)

In this case, certainty factor propagation is present. Cer-
tainty factor propagation is concerned with establishing the
value of belief in the rule's conclusion, CFj; z, when the un-
certainty of evidence in the rule's premise exists. For rule
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(15), the value of belief in rule's conclusion is given by the
following expression

CFH,E = CF-CF,; (16)

"nmn

where "-" is the multiplication symbol.

The certainty factor propagation technique is used also
when the rule base with inference chains is present. The
characteristic of an inference chain is that the conclusion of
some previous rule supports the premise of a current rule. A
rule base which consists of two rules with an inference
chain is given by the following

R;: IF A THEN B (CF))

R,: IF B THEN C (CF,)

The certainty theory model propagates the certainty
value through an inference chain in rules R; and R; as in-
dependent probabilities

CFC,A = CFC‘B . CFB,A (17)

although in the probability theory, in general, P(C|4) #
# P(C|B)-P(B|A).
Example 1. Suppose the following rule base is given

R;: IF 4 (CF,=0.7) THEN B (CF,=0.8)

R,: IF B THEN C (CF,=0.9)

The propagation of CF, = 0.7 through the rule R, gives
the value of belief of the conclusion B for the given 4, ac-
cording to (16), CF,4 = CF, CF, = 0.7-0.8 = 0.56. The fur-
ther certainty propagation, now through the rule R, gives
first CFg = CFpy = 0.56, and then CF¢ = CFp CF, =
=0.56-0.9 = 0.504, or (according to (17)) CFc= CFc4 =
=CFcpCFp4 = 0.9- 0.56 = 0.504. The value of belief in
conclusion C is 0.504.

In the certainty factor theory a rule with more than one
premise in IF part is interpreted either as a rule with con-
junctive premises

R;: IF E; (CFz) AND E, (CFj) AND ... (18)
... AND E, (CF5,) THEN H (CF))

or as a rule with disjunctive premises

.. OR E, (CF,,) THEN H (CF))

In forming a belief in a hypothesis H, supported by con-
junctive or disjunctive rules, in the certainty factor theory
the conditional independence of evidence is assumed. The
certainty factor CFy of the IF part of the rule is determined
by taking the minimum uncertainty value over the certainty
factors of the premises in IF part, (CFg), i = 1,..., n, in the
case of a rule with conjunctive premises

CFE = mln[CFEl , Cng, ey CFE,,] (20)

and then the value of belief in the rule's conclusion is de-
termined by expression (16).

The certainty factor CFg of the IF part of the rule is de-
termined by taking the maximum uncertainty value over the
certainty factors of the premises in IF part, (CFg), i = 1,..., n,
in the case of a rule with disjunctive premises

CFE: maX[CFEl, CFEz, e s CFE,,] (21)

This policy adopted in the certainty factor theory is in
accordance with the canons of the fuzzy set theory [7], [28].

Example 2. Suppose the following rule is given
B (CF
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Definition 4. Assume S is a set, a universe of discourse,

of objects generically denoted as s. 4 fuzzy set Ain S, A S,
is the set of ordered pairs

A={(s, u(s)) | seS} (22)

specified by a grade of membership £, which is used to as-
sociate with each element (each point) s € S, its grade of
membership to the set 4, 14,(s). A function p(s) is called a
membership function of the fuzzy set A, where p,(s) takes
values in the unit interval [0,1].

In a more general case, uy(s) can take values in a par-
tially ordered set [7]. A discrete membership function is
depicted in Fig.1, and a continuous membership function is
depicted in Fig.2. In the case of traditional, crisp sets, the
concept of membership function is equivalent to the well-
-known concept of a characteristic function (usually de-
noted by y : w(s) =yu(s) ), which takes values 1, when s
belongs to 4, or 0, when s does not belongs to 4.

B(x)

Figure 1. A discrete membership function of the fuzzy set " approximately 1"

By (1)
1

-1 1 2 3 4
Figure 2. A continuous membership function of the fuzzy set " close to 1"

The most important modeling tool, based on the theory
of fuzzy sets, is a fuzzy expert system. The base elements
of that system are fuzzy expert rules and approximate
(fuzzy) reasoning.

A fuzzy IF — THEN rule (fuzzy implication, fuzzy rule,
fuzzy conditional statement) is an expert IF — THEN rule of
the following form

IF s is 4, THEN y is B (23)

where s and y are variables taking values in universes of
discourse S and Y, respectively, and 4 and B are fuzzy sets
in S and Y. The interpretation of fuzzy rule enables calcula-
tion of conclusions from the sequence of such rules which
makes a rule base, that is, makes fuzzy reasoning possible.
Fuzzy (approximate) reasoning is a technique of automated
reasoning, which gives the procedure of getting an infer-
ence from fuzzy IF-THEN rules and known facts.

An approach based on fuzzy logic has been used in the
first fuzzy expert systems, implemented by Mamdani's
group at Queen Marry College in London. Fuzzy logic con-
trollers have been developed from those expert systems.

The theory of fuzzy sets provides a mathematical
framework for encompassing gradualness in computer im-
plementations of reasoning. This gradualness should not
necessarily be numeric one, it can be founded on order, on
the mathematical concept of a lattice [7],[9]. Gradualness

can express a similarity between propositions, levels of un-
certainty or preferential degrees.

Relation between the probability theory and fuzzy
logic

Zadeh said, in the seminal paper [7], that the concept of
fuzzy set is nonstatistical in nature:

" In fact, the notion of a fuzzy set is completely
nonstatistical in nature. " [7, p. 340.]

In probability theory and in the theory of fuzzy sets two
types of uncertainty are considered: randomness, in the
first, and fuzziness — a generalized concept of a classical
set, in the latter. Probability deals with mutually disjoint
facts, states, or situations. Fuzziness deals with membership
degrees to various sets, or phenomena, which are not mutu-
ally exclusive. Membership functions may be subjective,
i.e. not unique for all observers. Subjectivity, present in a
description of membership functions, comes from individ-
ual differences in description of abstract concepts, and has a
little with randomness. Hence, the subjectivity and nonran-
domness of fuzzy sets is the main difference between the
study of fuzzy sets and probability theory, which deals with
objective treatment of random phenomena.

A probability is defined in a probability space (S, P, P),
where P is a o-field in S, and P is a probability measure,
which maps Pto [0,1]

P: P—[0,1] (24)

A membership function py(s), s€S, where 4 is a fuzzy
set in S, is a measure

1 S —[0,1] (25)

A probability is defined on the power set P(S) of the set

S. A membership function z44(s) is defined on the basic set,
the universe of discourse S. If S is a finite set, for P additiv-
ity (10) holds

D P(ish) =1 (26)
seS

while x, is nonadditive measure:
D p(s) =1 27)

ses

Probability theory is based on probabilistic logic, and the
theory of fuzzy sets on fuzzy logic. Probability theory deals
with a probabilistic measure, while the theory of fuzzy sets
deals with a fuzzy measure [10].

Example 3. A difference between a probability and a
membership degree can be illustrated by the next example
[11], [10], [1]: Assume S is the set of all liquids. Let A be a
fuzzy subset of S, specified by the statement "liquids suit-
able for drinking ". Pure water has the membership degree
to the set 4 equal to 1, wine has the membership degree to
set A equal to 0.6, juice 0.8, brandy 0.2, and hydrochloric
acid 0. Suppose a thirsty traveler is in a desert and finds two
bottles with liquids. The first bottle is marked by the
membership degree to the set of liquids suitable for dri-
nking z, = 0.92, and the second by the probability that the
liquid is suitable for drinking P = 0.92. Which bottle the
traveler will choose to drink from? The membership de-
gree 4y = 0.92 means that in the bottle is something be-
tween mineral water and juice, what is quite acceptable. If
the choice is the second bottle, the traveler can get pure wa-
ter, but also poison. The first bottle is an obvious choice.
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In the foregoing example, in the terminology of the
theory of fuzzy sets, the set S, the set of all liquids, is the
universe of discourse. The fuzzy subset 4 in the set S, is
specified by the linguistic statement "liquids suitable for
drinking”. Elements in the set S belong to a fuzzy set 4
with some membership degrees, with their values in the
domain [0,1].

Thus, probability theory and fuzzy logic model two dif-
ferent phenomena of uncertainty, and they are complemen-
tary rather than competitive [14]. Assignment of probabili-
ties to fuzzy events can be considered — probability theory
of fuzzy events. Zadeh in [14], points to the fact that uncer-
tainty phenomena exist, where both randomness and fuzzi-
ness are present. Namely, the fact that the theory of prob-
ability is based on bivalent logic has the consequence that
probability theory is lacking in capability to operate with
perception-based information, whose validity is a matter of
degree. Such information (for example, "The road is wide")
has the form of propositions drawn from a natural language,
namely beyond the reach of existing predicate-logic-based
techniques of meaning representation. Bivalent logic is the
logic of measurement, while fuzzy logic is the logic of per-
ception. To enable probability theory to deal also with
problems described using perception-based information,
Zadeh proposes [14] to restructure probability theory by re-
placing bivalent logic on which it is based with fuzzy logic.
The result of restructuring probability theory is a more gen-
eral and more complex probability theory, which may be
called perception-based probability theory. In standard
probability theory only likelihood is a matter of degree, a
degree from a unit interval between 0 and 1. In perception-
based probability theory, everything — and especially truth
and possibility — is, or is allowed to be, a matter of degree.
Complexity is the price of constructing a probability theory
which has a close rapport with pervasive imprecision, un-
certainty and ill-definedness of the real world.

Possibility theory

Possibility theory [12] gives the way of uncertainty
modeling when available information is not precise and cer-
tain, but is described using fuzzy sets. Possibility theory is
connected with the theory of fuzzy sets in such a way that
the concept of a possibility distribution is defined as a fuzzy
restriction which acts as an elastic constraint on the values
that may be assigned to a variable [12]. Similarly to a prob-
ability (1 - 4), a possibility can also be considered from the
measure theory aspect [27], [6].

Let A — S, where 4 is a crisp (traditional) set. Let V' be a
variable defined on S. To say that J takes its value in 4 in-
dicates that any element in 4 could possibly be a value of V,
and that any element not in 4 cannot be a value of V. The
statement "the variable V' takes its value in 4" can be
viewed as inducing a possibility distribution 7 over the set
S, associating with each element s in S, the possibility that s
is a value of V'

lif sed,

HV=s)=r(s) {0 i sed

Next, assume 4 is a fuzzy subset in a universe of dis-
course S = {s}, where s is a generic element in the set S. A
fuzzy set A4 is specified by its membership function z,, and
then a statement of the form " V'is A", where V is a variable
taking its values in S, induces a possibility distribution /7

that makes the possibility that V' takes value s to u4(s). This
value, p4(s), represents a compatibility measure of the value
s with 4. In that way V' becomes a fuzzy variable associated
with a possibility distribution /7, in much the same manner
as a random variable is associated with a probability distri-
bution. A fuzzy set 4 induces a possibility distribution that
is equal to a membership function p, of that fuzzy set 4, on
the values of V'

TI(V'=15) = 7(s) = 1ta(5)

A thesis advanced in [12] is that the imprecision that is
intrinsic in natural languages is, in the main, possibilistic
rather than probabilistic in nature. Thus, by employing the
concept of a possibility distribution, a proposition p, in a
natural language may be translated into a procedure, which
computes the possibility distribution of a set of attributes,
implied by p. In such a way, in [12] an improvement has
been made with respect to the results of Wiener and Shan-
non: they considered that information was intrinsically sta-
tistical in nature. The improvement is related to the fact that
when the main concern is with the meaning of information,
the proper framework for information analysis is possibilis-
tic rather than probabilistic.

As a probability (1-4), a possibility can also be consid-
ered from the point of view of the measure theory (1), (2),
(28), (29), [6]:

Definition 5. Let 5 be equal to the power set of the set
S: 5= P(S). A possibility on S is a belief measure /7.5 —
—[0,1] such that for any system {Xa| a € I} of the subsets
of S (/ is any non-empty index set) it holds

H(UXajzsup (X)) (28)

ael ael

A possibility I1(4), A = S, s € S, indicates the possibility
that the value of the variable V, and that value is s, lies in
the subset A4.

A necessity is a belief measure . 5 — [0,1] such that
for any {X, lael } as above

nf[mXaj:ig nw(x,) (29)

ael

The properties of possibility are given by the following
statements [6]:

1. If /7 is a possibility on S then the function /1, defined
as /(X)=1 - I[(S—X), is a necessity measure on S.
Conversely, each necessity #1- defines a possibility

IXx)==1- n (S—X).

2. Each possibility is uniquely determined by its values on
singletons: if 7: S — [0,1] is a normalized fuzzy subset
of S (i.e. 7 (s;) = p ({s;}) and sup sc5 7(s) = 1), then

I0X) = sup s cx 7 (s) (30)

is a possibility. (And, of course, if /7 is a possibility and

7 (s)=I1({s}), then 7 is a normalized fuzzy subset of S

determining /7 by (30).)

From the foregoing exposition it is obvious that the pos-
sibility theory has been derived from the theory of fuzzy
sets. A possibility function is connected with the fuzzy set
which represents the linguistic variable. For example, if a
variable V corresponds to the value of a number, and it is



64 D.SALETIC, D.VELASEVIC: UNCERTAINTY PHENOMENA AND FORMALISMS OF THEIR MODELING IN EXPERT SYSTEMS

known that the value of a number, i.e. the value of a vari-
able V is "approximately 1", then the fuzzy set "approxi-
mately 1" induces the possibility distribution in such a way
that the membership degree of an element becomes the pos-
sibility of that element.

A fuzzy set and a possibility distribution have a common
mathematical expression. But, there is a difference between
them: a fuzzy set A can be viewed as a fuzzy value that is
assigned to a variable. Viewed as a possibility restriction, 4
is the fuzzy set of nonfuzzy values that can be possibly as-
signed to a variable V.

Possibility and probability

Concepts of a probability distribution and a possibility
distribution are different [12]. Possibility measures are
max-decomposable for the disjunction of events (28), [12],
[10], while the probability measures are additive (for mutu-
ally exclusive events). Necessity measures are min-deco-
mposable for the conjunction (29). Possibility (respectively,
necessity) measures are not compositional for conjunction
(respectively, disjunction), eg.

M (AU B) > max( /v (A), v (B)) (€29

(One may be (somewhat) certain of 4 or B without being
certain of 4 or being certain of B, at all.)
In possibility theory, the assessment of uncertainty of A

requires two numbers, namely 71(A4) and #v(4) =1 - I A)
which are only weakly related, while the probability of A
completely determines the probability of the complemen-

tary event A . Also, possibility (and necessity) measures
only require an ordered scale for grading uncertainty, since
the possibility theory only uses max, min, and an order-
reversing operations. This is in agreement with a rather
qualitative view of uncertainty.

Applications of fuzzy sets

The ability of fuzzy sets and possibility theory to model
gradual features or elastic constraints the satisfaction of
which is a matter of degree, as well as information per-
vaded with imprecision and uncertainty, makes fuzzy sets
useful in a great variety of applications. The most popular
area of applications is fuzzy control. The fuzzy set method-
ology can be used in the area of information systems, espe-
cially in information retrieval and database management. If
the fuzzy methodology is used, then these systems may al-
low for the presence of imprecise, uncertain, or vague in-
formation in the data base. Problems of fulfillment of elas-
tic constraints and optimization make a class of applications
(eg. [30]). Besides that, fuzzy logic, in the context of artifi-
cial intelligence, is applied in the following domains:

- knowledge representation;

— approximate reasoning;

- numerical function coding and approximating, in data
mining [29];

— pattern recognition and classification;

- multivalued logics;

— processing and analysis of digitalized pictures repre-
sented by levels of gray.

Dempster-Shafer theory of evidence

The most important objects in the Dempster-Shafer the-
ory of evidence are Shafer’s belief functions. They are used
to model and quantify subjective credibility induced in an
observer by evidence. Pieces of evidence consist of internal

(objective) evidence (facts) and of external evidence (testi-
monies). Using Dempster’s work on lower and upper prob-
abilities [15], Shafer gave [16] a reinterpretation of that
work. In that reinterpretation, Dempster’s "lower probabili-
ties” are identified as cognitive probabilities or degrees of
credibility, the rule of combination of such degrees of
credibility is taken as fundamental, and the idea that de-
grees of credibility arise as lower bounds over classes of
Bayesian probabilities is abandoned.

The originality and the power of Shafer’s model is that it
does not evoke the principle of insufficient reason or an ar-
gument of symmetry. In the situations which would give
the contradiction, Shafer’s model leaves the total mass of
belief allocated to the proposition, without splitting it be-
tween the components of the proposition [19].

A fuzzy measure 1 with respect to a variable V' (a meas-
ure defined by expressions (1) and (2)), provides a descrip-
tion of a knowledge about the variable. When using a belief
measure, although there exists some uncertainty with re-
spect to the actual value of the variable, it is assumed that
there exists no uncertainty with respect to the knowledge of
the description of the uncertainty. But, the situation is pos-
sible in which there exists only partial information with the
respect to the underlying belief measure, for example that
wA) € [a,b].

The Dempster-Shafer theory of evidence is an uncer-
tainty modeling tool used as an alternative to the probability
theory [6], [20]. The main application is in cases when
there is no enough information that should be sufficient for
using more precise apparatus of probability theory. The
main idea is still probabilistic. Specifically, assume S is the
basic set of elementary propositions, and P the power set
of S. A function g(.) is introduced on P which fulfills the
axioms (1) and (2) (the point in g(.) corresponds to the vari-
able of the observed universe of discourse). If p and ¢ de-
note propositions, the elements from the set £, P can be
treated as Boole’s algebra of propositions. The set notation
is freely combined with the proposition notation, and then
expressions (1) and (2) are

g(©)=0 (32)

g8 =1 (33)

ifpcq(p=q=1)then g(p) <g(q); (34)
(monotonicity)

where J is an empty set, S is the whole (basic) set), and
"p = g = 1" (tautology), means: "it is true that p implies ¢
in any interpretation”.

Two standard functions that satisfy those axioms are
Shafer’s functions of credibility and plausibility. Previ-
ously, the function m, called a basic probability assignment,
is introduced [6].

Definition 6. Let V' be a variable that takes values in the
set S. Let P be the power set of S. The basic probability as-

signment is a function m: P — [0,1], which fulfills the fol-
lowing conditions:

m(&) =0 (35)
; m(p)=1 (36)

The basic probability assignment m defines a probability
distribution on the power set P.
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If there is a block of insufficiently certain information, it
is possible to allocate probabilities to propositions from P,
which are not mutually disjoint (in the basic set S elements
are always mutually disjoint). The propositions p such that
m(p) > 0 are called focal propositions (because information
is based, i.e. "focused”on them). Certain information is rep-
resented by a unique focal proposition py , m(py) = 1. The
value of m(p) is the probability that the evidence is pre-
cisely and entirely described by the proposition p. Every
basic probability m(p), p € P, supports also every proposi-
tion ¢ that is implied by the proposition p.

Definition 7. Credibility of a proposition g, Cr(q), is a
sum of all basic probability assignments of propositions p
which imply the proposition g (i.e. of all more specific pro-
positions p which are contained in the proposition ¢, p < q)

Vge P, Criq) = m(p) (37)

p=q

The credibility function Cr(.), Cr:P — [0,1] has a com-
plementary function, the plausibility function PI(.): Pl: P
—[0,1]

Vpe P, Pl(p)=1-Cr(—p) (38)

The plausibility of a proposition ¢ is a sum of amounts
of belief that are allocated to the proposition p and that are
not in contradiction with the proposition ¢, i.e. which do not
imply —q.

Definition 8. The plausibility function PI(.) is a sum of
all basic probability assignments of the propositions p for
which is fulfilled —(p = —q), i.e. p N q #J

Vqe P, Pllg)= ). m(p) (39)

—(p=—q)

that is, the degree of plausibility of some event ¢, Pl(q), is
the sum of the basic probability assignments of the events p
for which is fulfilled p N g #&.

Hence, it holds

Vpe P, Cr(p) + Cr(—p) < 1 (40)
Vpe P, Pl(p)+ Pl(—p) >1 (A1)
Vpe P, Cr(p) < Pl(p) (42)

Both functions are, by definition, belief functions, they
fulfill expressions (32-34). Intuitively, credibility Cr(p) can
be interpreted as a degree of minimum or necessary prob-
abilistic support, P(p), to a proposition p, defined on the
base of the current, incomplete, knowledge. Plausibility
PI(p) can be interpreted as a degree of maximum or poten-
tial support, P(p), to a proposition p.

Two special cases of credibility and plausibility func-
tions are especially interesting, and are specified by the
structure of focal elements. These cases are:

1. If every focal proposition p is such that p does not imply
¢, then p and ¢ are mutually disjoint, V¢, pe P. In that
case the expression for credibility and plausibility are in
fact the expressions dealing with probability.

2. If the set of focal propositions can be ordered, then the
function P/ is a possibility measure and conversely. In
this case Cr is also a necessity measure.

Different pieces of evidence are combined by the appli-
cation of Dempster’s rule of combination on the basic prob-

ability assignments. The rule is an associative and commu-
tative binary operation defined on the set S of all basic
probability assignments. For two basic probability assign-
ments, m; and m, , the combined basic probability assign-
ment m,, is given as

ma(C)= 3 (my(A)m,(B)/(1-d) 43)
where
d= Z (m,(A) *m,(B)) (44)
AnB=0

and 4, B, C € P. The quantity d is the measure of dis-
agreement of two sources, and is used as a renormalization
factor.

Since the subset of possibilistic basic probability as-
signments is not closed with respect to Dempster's rule, the
possibilistic rule of combination has been introduced. For
this rule the mentioned subset is closed

72 (8) = min(7z (5), 7, (5))/ (1-d) (45)

where

d= suE min(7z, (s),7,(s)) (46)
For the possibilistic rule of combination, idempotency
holds, and that is not case for Dempster's rule or for the
multiplication of probabilities. In the case of the possibilis-
tic rule, information sources can be dependent.
Dempster-Shafer’s belief functions provide a model for
quantifying a degree of belief that the proposition is true.
The model is promising for the development of expert sys-
tems that need to handle uncertainty. Computer implemen-
tations have shown that Dempster-Shafer’s approach to un-
certainty modeling demands a lot of input data, so computer
resources demands are relatively significant [22]. (This ap-
proach to uncertainty modeling is used, for example, in the
diagnostic expert system GERTS [22]).

Roughness

The theory of rough sets was originated by Zdzislaw
Pawlak in the early 1980s as a result of a long-term pro-
gram of fundamental research on logical properties of in-
formation systems [23]. The theory is concerned with the
classificatory analysis of imprecise, uncertain or incomplete
information or knowledge, expressed in terms of data ac-
quired from experience. The primary notions of the theory
of rough sets are [24]: the approximation space and lower
and upper approximations of a set. The approximation
space is a classification of the domain of interest into dis-
joint categories. The classification formally represents the
knowledge about the domain, i.e. the knowledge is under-
stood as an ability to characterize all classes of the classifi-
cation, for example, in terms of features of objects belong-
ing to the domain. Objects belonging to the same category
are not distinguishable, which means that their membership
status with respect to an arbitrary subset of the domain may
not always be clearly definable. This fact leads to the defi-
nition of a set in terms of lower and upper approximations.
The lower approximation is a description of the domain ob-
jects which are known with certainty to belong to the subset
of interest. The upper approximation is a description of the
objects which possibly belong to the subset. The negative
region is made of those domain objects which are known
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with certainty not to belong to the subset of interest. Any
subset defined through its lower and upper approximation is
called a rough set.

The previous exposition can be formalized: assume that
a domain, a set S of objects, a set of object attributes, AT, a
set of values, VAL, and a function /: § x AT — VAL, (that
can be given by a table) are given. In that way each object
from S is described by the values of its attributes. Then, an
equivalence relation (called also an indiscernibility rela-
tion) R(A) is defined, where A — AT.

Definition 9. If, for any two elements s;, s; € S
S R(A) S/ g f(sia a) :f(sj9 a)) va € Aa l;t] (47)

then s; and s; are indiscernible elements with respect to the
attributes in A.

The set S is partitioned, using the relation R(A), into
equivalence classes. The pair (S, R) forms an approxima-
tion space with which the arbitrary subsets of S referred to

s concepts are approximated. A concept is a subset of the
et S of all objects with the same value of the function f. For

given concept X < S, that subset can be approximated by
unions of various equivalence classes: by the lower ap-
proximation of the set X,