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Mechanical and mathematical spatial modelling of the truck-crane 
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This paper analyzes the dynamics of the truck-crane telescope boom, using a relatively simple mechanical model con-
sisting of elastic bodies and reduced to a mechanical system with three degrees of freedom. Such obtained theoretical 
results are verified by a numerical example in the case of variable force in the weight lifting rope. Finally, the results 
are compared with the results obtained by the static analysis of the same telescope boom. 
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Introduction 

I N former works referring to the field of telescopic boom 
dynamics, in most cases the boom construction is mode-

led as a system with a definite number of concentrated 
masses or as a system of elastic bodies. In the first case the 
model is simple and the results are of approximate value, 
while in the second case a mathematical model is consid-
erably more complex and the results more precise. In order 
to get results that describe construction deformations more 
precisely, the boom should be modeled as a bearer with 
continually distributed masses considering solution possi-
bilities of differential equations obtained. 

 

Figure 1. Geometrical form of the truck-crane telescopic boom 

In the works [1,2,3,4] the problem of static stability of 
truck-crane lattice booms was discussed by means of an 
analysis of the basic differential equation of the boom neu-
tral axis. The result produced expressions used to define the 
boom neutral axis in space under the effect of all types of 
load that might occur during its operation. Dynamic models 
with a greater number of degrees of freedom (system of 

concentrated masses), or with an infinite number of degrees 
of freedom (systems of elastic bodies) are given in the 
works [5,6,7]. The dynamic analysis of the truck-crane tele-
scopic boom oscillations in the vertical plane for the case of 
its modeling with continually distributed masses is given in 
the work [8]. In this work the dynamic analysis of spatial 
oscillating of the truck-crane telescopic boom will be pre-
sented for the case of its modelling with continually distrib-
uted masses using a model reduced to a three-degrees-of-
freedom system. 

Mechanical model 

 

Figure 2. Scheme of the truck-crane telescopic boom load 

The analysed mechanical system consists of a telescopic 
boom modeled as a beam bearer of a variable cross-section 
(Fig.1). The boom consists of segments (telescopes) fitting 
one into another, so some parts of the boom have increased 
cross-sections, moments of inertia and mass [9]. At its 
overhang (Fig.2) there acts the force within the load lifting 
rope (Fu), the force within the load lifting rope (P), and also 
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the force (S) resulting from the action of the boom reduced 
mass (weight) onto its top 
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where 
n – number of pulley tackles, 

k – degree of pulley efficiency, 
ms – boom mass. 

 

Figure 3. Form of the boom neutral axis in the vertical plane 

 

Figure 4. Form of the boom neutral axis in the horizontal plane 

The established mechanical model takes into account 
angle oscillations - load swaying in both planes. It is as-
sumed that the angles of swaying (β) in both planes are ap-
proximately equal. 

The influence of the boom weight can be also treated as 
continual load which results into more complex final ex-
pressions. Their solving is very complicated even when ap-
plying the numerical method, and the obtained results, it is 
a realistic assumption, are only slightly more precise. 

In a general case the discussed system has an infinite 
number of degrees of freedom. However, with regard to the 
task of investigation and introduced simplifications, this 
system can be substituted by a model with three degrees of 
freedom. The motion of such a system is defined by gener-
alized coordinates 
u – boom top deformation in the direction perpendicu-

lar onto the longitudinal, non-deformed boom axis 
in the vertical plane (Fig.3), 

w – boom top deformation in the direction perpendicu-
lar onto the longitudinal, non-deformed boom axis 
in the horizontal plane (Fig.4), 

v – midboom deformation in the direction perpendicu-
lar onto the longitudinal, non-deformed boom axis 
in the vertical plane [11]. 

Force within the rope for load lifting 
Load lifting process can be modeled as a system of two 

masses [10] (Fig.5) 

 

Figure 5. Dynamic model of load suspension 

where 
m1 – mass of the engine rotor and the reduced mass of 

drive mechanisms on it, 
m2 – load mass, 
c – rigidity of the load lifting rope, 
Q – load weight, 
f(t) – dynamic drive force. 

Dynamic drive force occurs during the period of non-
stationary motion and can be defined by the following ex-
pression 

0,5( ) [1 ( ) ]tf t P
T

= ⋅ −  (2) 

where 
P – dynamic drive force for t=0, 
T – time of engine acceleration. 

The process of load lifting is carried out in two phases. 
In the first phase load lies on the ground, the consequence 
being that only mass m1 oscillates under the action of the 
force Q + f(t), which is described by the following differen-
tial equation 

1 1 1 ( )m c Q fξ ξ⋅ + ⋅ = +&& t  (3) 

During this phase the rope strain (ξ) is equal to the gen-
eralized coordinate 

1ξ ξ=  (4) 

The second phase starts at the moment when the force 
within the rope reaches the value of load weight. During 
this phase the rope strain is equal to the difference of the 
accepted generalized coordinates 

1 2ξ ξ ξ= −  (5) 

and its change is described by the following equation 

1 2 1 2
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+ +
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⋅ ⋅

&&  (6) 
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The force within the rope for load lifting can be defined 
on the basis of expressions (4), (6) as 

( ) ( )uF t c tξ= ⋅  (7) 

Differential equation of the boom motion 
The observed mechanical system is non-conservative 

and corresponding relations are holonomous and ideal. The 
boom bending is neglected. 

The equation of the boom neutral axis is unknown. In the 
works [2,5,12,13,14] the neutral axis is assumed in the form 
of various functions 
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2
0 1 2y a a z a z= + ⋅ + ⋅  (10) 

where the unknown constants a0,  a1 , a2  are defined on the 
basis of limit conditions. In this work the neutral axis of the 
boom is assumed to be in the form of a polynomial. 

The truck-crane boom is modelled as a beam with an 
overhang in the vertical plane. Its assumed equation of the 
neutral axis at the span of  L1< z < Ln is of the form 

21
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where the unknown constants b0, b1, b2  are defined on the 
basis of the limit conditions 
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On the basis of expressions (11) and (12) the final form 
of the assumed equation of the boom neutral axis is ob-
tained 

( )2
2 5 1 4 2( )y z z k v z k u k v k u k v= + + + + 3  (13) 

where  

1
1

1

n

k
L L

=
−

, 1
2

1n

Lk
L L

= −
−

, 1
3 2

1

4
( )

n

n

L Lk
L L

=
−

 

1
4 2

1

4( )
( )

n

n

L Lk
L L

+
= −

−
,  5 2

1

4
( )n

k
L L

=
−

 

The assumed equation of the boom neutral axis at the 
span of 0 < z < L1 has the form 

2
1 0 1 2( )y z a a z a z= + ⋅ + ⋅  (14) 

where the unknown constants a0, a1, a2 are defined on the 
basis of the limit conditions 

1(0) 0y =  
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(15) 

The boom displacement v1 can be defined in the function 
of the displacements u and v on the ground of the conditions 
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  for  z=L1 (16) 

On the basis of egs.(14), (15) and (16) it follows  
2
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The truck-crane boom is in the horizontal plane mod-
elled as a console bearer. Its assumed equation of the neu-
tral axis is of the form 

2
0 1 2( )

n

zx z w d d z d z
L

= + + ⋅ + ⋅  (18) 

where the unknown constants d0, d1, d2  are defined on the 
basis of the limit conditions 
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The boom displacement w1 can be defined in the func-
tion of the displacement w on the ground of the conditions 

0x
z

∂
=

∂
 for  z=0 (20) 

On the basis of egs.(18), (19) and (20) the final form of 
the equation of the boom neutral axis in the horizontal 
plane is as follows 

2
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For the calculation of differential equations of motion, 
the Lagrange equations of the other kind will be used 

s s s s
j
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j=1, 2, 3, (q1=w, q2=u, q3=v) 

(22) 

where Ts, Πs, Φs, Qu - are kinetic energy, potential energy, 
function of the boom dissipation (dissipative force), and 
corresponding generalized non-conservative force, respec-
tively. 

The kinetic energy of the boom is defined as 

s stT T T= + sr  (23) 

where  
Tst – kinetic energy of translation, 
Tsr – kinetic energy of boom rotation. 

The kinetic energy of boom translation is of the form 

2
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The boom is modelled as a beam bearer with a gradually 
variable cross-section (Fig.1). The mass of the elementary 
part of the boom is 

( )sdm A z dzρ= ⋅ ⋅  (25) 
where  
ρ – density of the boom material, 
A(z) – cross-section surface of the elementary i-part of 

the boom. 
The speed of the elementary part is defined as follows 

2 2 2 2( ) ( )x yv v v x z y z= + = +& &  (26) 

On the basis of egs. (24),(25) and (26) it follows 
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the solution of which offers the final form of the boom 
translation kinetic energy 
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where Ai is the cross-section surface of the i-part of the 
boom which is at the span of  Li-1 to Li (Fig.1). 

The kinetic energy of rotation is defined on the basis of 
the expression 
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The main central moment of inertia of the i-part of the 
boom is of the form 

2
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The rotation angles of the elementary i-part of the boom 
in the Oyz and Oxz planes are defined in the following way 
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On the basis of egs.(29),(30) and (31) it is obtained 
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the solution of which offers the final form of kinetic energy 
of the boom rotation 
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The potential energy of the observed mechanical system 
is defined as follows 

1 2S SΠ Π Π Π= + +  (34) 

where  
ПS1 – potential energy of the elastic deformation due to 

boom bending, 
ПS2 – potential energy of the boom pressure due to the 

axial force action N, 
ПS3 – potential energy of the boom due to the transver-

sal forces action Ftx  i Fty. 
The potential energy of the elastic deformation due to 

boom bending is 
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resulting into 
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where 
Ixi (Iyi) – is the moment of inertia for the axis x(y) of the 

boom i-part which is at the span of Li-1 to Li 
(Fig.1) 

E – elasticity module. 
The potential energy of the boom pressure due to the ax-

ial force action is 
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The axial force of pressure is defined on the basis of the 
expression 
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Finally, expression (37) reaches the following form 
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The potential energy of the boom due to the transversal 
force action is defined by applying the following formula 
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Transversal forces are defined on the basis of the expres-
sion (Fig.2) 
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The final form of the expression for potential energy 
(40) acquires the following form 
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The function of dissipation (dissipative force) is defined 
by applying the following expression 
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the solution of which gives 
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where ε is the coefficient of boom damping, and also the 
changes are introduced 
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The generalized force is of the form 

,  ,   0w tx u ty vQ F Q F Q= =  (45) 

When into the Lagrange equations of the other type (22) 
the expressions for kinetic (23), (28) and (33) and potential 
energies (34), (36), (39) and (42) as well as the function of 
dissipation (44) are introduced, three differential equations 
of the second order are obtained in the following form 
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which can be solved numerically, by means of a computer, 
introducing the changes 

0X =       1X w= &

2X u=      3X u= &

4X v=      5X v= &

(47) 

In this way six differential equations of the first order are 
obtained, convenient for the numerical solution of some of 
the programs such as Matlab and Mathcad. When the re-
sults obtained for the displacements (w, u, v) are introduced 
into expressions (13), (17) and (21), the forms of the boom 
neutral axis in space for an arbitrary moment of time are 
obtained. 

Numerical example and the result analysis 
The obtained theoretical results are discussed on a nu-

merical example of the truck-crane telescopic boom of 
maximum deadweight mq= 16 t, designed at Ivo Lola Ribar 
- Železnik (Belgrade). 

A change in rope strain is of elasticity type in the course 
of time and depends on the characteristics of lifting drive, 
rope rigidity, rotor mass of the engine, drive mechanisms 
and load (Fig.6). 

 

Figure 6. Change in rope strain in the function of time 

By solving numerically non-linear differential equations 
(47), the curve of the boom top displacement (∆) depend-

ence on time is obtained, which is of oscillatory type with 
the occurrence of damping (Fig.7). 

2 2u v∆ = +  (48) 

 

Figure 7. Change of the boom top deflection in the function of time By means of the analysis of the6 -sults achieved employ-ing the established dynamic model we6 -ach to the conclu-sion that the observed displacements oscillate around their static values. After a definite time, under the effect of damping, the boom will stop to oscillate and in that way gain balance which can also be defined by the application of the static analysis [8].  Figure 8. Change of the dynamic coefficient (ψ) in the function of time tg The maximum values of deflections appearing at the be-ginning of oscillating are higher than the static ones. In cal-culations such phenomenon is taken into account by means of the dynamic coefficient (ψ) which depends on time tg (Fig.8). In case the first stage does not exist in the process of load lifting (tg=0), the maximum deflection value is ap-proximately two times higher than its static value (ψ≈2). With the increase of time up to tg≈0.35s the dynamic coef-ficient decreases to the value of ψ=1.25. After that moment the curve ψ=ψ(tg) acquires an oscillatory character with the occurrence of slight damping. In practice the first period of load lifting within the value of tg≈(0.35...1.2) s should be avoided, because at that time greater deflections might oc-cur  than when tg values are lower. By choosing optimum values of time tg dynamic overload can be considerably re-duced which results into higher efficiency of the truck-crane exploitation possibilities. On the basis of the performed analysis we are able to recommend that in practical calcula-tions the dynamic coefficient should be higher than 1.2. Including the expressions which by the dynamic analysis define the boom top deflection (48) into egs. (14), (18) and (22) the forms of the boom neutral axis for definite mo-ments of time are obtained (Fig.9). 
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Figure 9. Forms of the boom neutral axis in various moments of time 

For the accepted parameters of the truck-crane boom 
motion, deformations in the vertical plane are more criti-
cal than deformations that occur in the horizontal plane. 
This does not mean that deformations in horizontal plane 
should be neglected, for they gain higher values in case 
when the truck-crane upper machine rotates. The deflec-
tion v1 (Fig.3) in comparison with the deflection of the 
boom top u is insignificant (v1≤0.1u). From the performed 
analysis it appears that the dynamic deflections of the 
boom top are of oscillatory type. Such deflections can be 
influenced by optimum an appropriate, but also by drive 
reduction, i.e. by an appropriate engine characteristic of 
the load lifting mechanism. 

Conclusion 
The task of this work was to analyse the dynamic behav-

iour of the truck-crane telescopic boom in space, particu-
larly of its neutral axis by modelling the boom as a bearer 
with continually distributed masses. By the application of 
the Lagrange equations of another type, differing from the 
static analysis usually applied in practice, the results that 
correspond better to real boom operation conditions are 
achieved. The formulae obtained define a spatial form of 
the boom neutral axis in the course of time. With slighter 
modifications, the established model can be applied to other 
similar constructions. 
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Prostorno mehaničko-matematičko modeliranje teleskopske strele 
auto-dizalice 

Analizira se oscilovanje teleskopske strele auto-dizalice u prostoru, korišćenjem kombinovanog dinamičko-statičkog 
modela sastavljenog od elastičnih tela koji se svodi na mehanički sistem sa tri stepena slobode kretanja. Dobijeni 
teorijski rezultati se verifikuju numeričkim primerom za slučaj promenljive vrednosti sile u užetu za podizanje 
tereta, a zatim se rezultati porede sa rezultatima dobijenim pri statičkoj analizi iste strele. 

Ključne reči: auto-dizalica, strela, prostor, deformacija, dinamički model. 

Modélisation mécanique-mathématique et spatiale du flèche 
télescopique de camion-grue 

Les oscillations du flèche teléscopique de camion-grue sont analysées dans ľespace en utilisant un modèle dynamique-
statique combiné et composé de corps élastiques - un modèle reduit au système mécanique à trois degrés de liberté. 
Les résultats théoriques obtenus sont vérifiés par un exemple numérique pour le cas ďune force variable dans la 
corde pour lever des poids et puis comparés aux résultats obtenus dans ľanalyse statique du même flèche. 

Mots-clés: camion-grue, flèche, espace, déformation, modèle dynamique. 



 

 



 R.MIJAILOVIĆ, R.ŠELMIĆ: MECHANICAL AND MATHEMATICAL SPATIAL MODELLING OF THE TRUCK-CRANE TELESCOPE BOOM 59 

 


	Mechanical and mathematical spatial modelling of the truck-crane telescope boom
	Introduction
	Mechanical model
	Force within the rope for load lifting
	Differential equation of the boom motion
	Numerical example and the result analysis
	Conclusion
	References

	Prostorno mehanièko-matematièko modeliranje tele
	Modélisation mécanique-mathématique et spatiale�

