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Singular systems are those the dynamics of which is governed by a mixture of algebraic and differential equations. In that 
sense the algebraic equations represent the constraints to the solution of the differential part. These systems, also known 
as descriptor, semi-state and generalized systems, arise naturally as a linear approximation of system models, or linear 
system models in many applications such as electric networks, aircraft dynamics, neural delay systems, chemical, thermal 
and diffusion processes, large-scale systems, interconnected systems, economics, optimization problems, feedback sys-
tems, robotics, biology, etc. For an elementary dynamic analysis of singular  systems their solution in state space is neces-
sary. In classical sense it means that there is a need for calculating general or pseudo  inversions of system matrices. On 
the other hand this is too complicated in numerical sense. So this paper investigates another possibility of solving system 
equations using different aproximations based on strict applications of very well-known orthogonal functions. Some nu-
merical examples have been worked out to show the applicability of the presented results. 
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Introduction  

L INEAR singular systems are those the dynamics of 
which is governed by a mixture of algebraic and differ-

ential equations. In that sense the algebraic equations repre-
sent the constraints to the solution of the differential part. 

The existence (solvability), uniqueness and smoothness 
of solutions of linear singular systems, as well as their pos-
sible canonical forms, are the questions that must be care-
fully treated. They differ significantly from those estab-
lished for normal systems. In that sense, our primary task is, 
before discussing any questions concerning stability prob-
lems for this class of systems, to indicate and demonstrate 
these problems clearly. 

A particular problem is always connected with a need to 
find a state response of linear singular systems. In that 
sense two approaches have been usually accepted, both 
based on a strict application of general or so-called pseudo 
inversions of system matrices, which leads in the former 
case to the implementation of Drazin and in the latter case 
of Moore-Penrose inversions, see Debeljković et al [27,28]. 
The given examples show all general complexity of the 
proposed procedures. 

In some cases, when linear descriptive systems are in-
vestigated, a state space response can be achieved by using 
a fundamental matrix which enables finding system solu-
tions using the Laurent expansion only. 

The problem presented, in the sequel, extends some 
known analytic techniques for the solutions of state-space 

equations of normal systems to the case of linear singular 
systems. This problem appears to introduce a serious com-
putational task. To alleviate these numerical efforts, an ap-
proximate solution of linear singular systems by using or-
thogonal functions is proposed. This approximate solution 
is a direct extension of known results for normal systems by 
using orthogonal functions of type Walsh, Block-pulse, 
Laguerre, etc. 

Since the basic paper of Chen, Hsiao appeared in 1975 
[16], the system dynamic analysis by using orthogonal 
functions has become very popular. 

This approach shows that the differential-algebraic sys-
tem equations may be converted in to pure algebraic equa-
tions that can be solved in the terms of the orthogonal basic 
functions. The further numerical treatment of this problem 
is a very simple one.  

The implementation of this approach has been used in 
several feedback singular control problems, Rao [55], 
Paraskevopoulos [52], Campbell [9], Marszalek [43], Pa-
raskevopoulos [54], Rao, Tzaffestast [56], in optimal con-
trol Chen, Shih [21], in signal processing, telecommuni-
cations and pattern recognition Ahmed, Rao [1], linear sys-
tem analysis and design Chen, Hsiao [17,18,19] and by 
some authors such as Gantmacher [30], Luenberger [38], 
Campbell [9], Christodoulou et al. [22], for some other 
purposes.  

Although the solutions obtained by the use of orthogonal 
functions are approximative, necessary accuracy may be 
achieved with a sufficient number of basic functions. The 
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advantages that can be achieved by this method are more 
than evident. 

The expression orthogonal functions denotes piece-wise 
functions such as Hamadar, Haar, Laguerre, Walsh and 
Block-pulse or orthogonal polynomials such Chebyshev, 
Legendre, Hermite and some others.  

The application of these functions in the system dynamic 
analysis and control is presented in  the papers of  Rao [55] 
and Paraskevopoulos [54]. 

Let there be prescribed a linear time invariant singular 
system of the form 

0( ) ( ) ( ), (0)E t A t B t= + =x x u x& x

r t

 (1) 

where the state vector x∈ℜ , the control vector u∈ , 
with the singular matrix E ∈  and with the constant 
matrices  A∈ℜ  and B ∈ . 

n

nℜ

mℜ
n n×ℜ

n×n n×

In order that eq.(1) has a unique solution there must be 
. Furthermore, when  is a consistent ini-

tial condition, then the solution eq.(1) is unique and con-
tains no impulses, Debeljkovic et. al [25,26]. If  does not 
belong to the subspace of the consistent initial conditions, 
the solution of eq.(1) involves impulses, which is undesir-
able. 

det( ) 0sE A+ ≠ 0x

0x

Clearly, working with the solution eq.(1) expressed us-
ing Drazin inverse, Debeljkovic et. al [24] requires a great 
amount of computational work. To overcome this difficulty 
there will be presented a method which reduces the problem 
of solving eq.(1) to that of solving an algebraic system of 
equations. 

This method is based on the idea of approximating the 
solution  by a truncated orthogonal series as follows ( )tx

x(t)=F      F∈  ( )r tφ n r×ℜ (2) 

0 1 1( ) [ ( ), ( ),..., ( )]T
r t t tφ φ φ φ −=  (3) 

where , ,…,  is a set of r basic functions, 
orthogonal at a certain interval [α,β], which is usually ad-
dopted as [0,1), r being an integer. 

0 ( )tφ 1( )tφ 1( )r tφ −

F is the n×r constant matrix to be determined.  
The basic idea of eqs.(2) and (3) is to replace the un-

known vector  by the matrix This approach has al-
ready been applied to normal systems many times before.  

( )tx .F

Let u(t) be approximated by the following truncated or-
thogonal series 

u(t)=Gφ(t)     G ∈ℜ  rn× (4) 

where G is the m×r known matrix.  
The known initial condition , may be written as 0 (0)=x x

0x  = Qφ(t)      Q ∈ℜ  rn× (5) 

The choice of orthogonal series to be used depends on a 
problem to be solved. It is well known − Chen, Hsiao [16], 
Chen, Shih [21] − that a great number of basic orthogonal 
functions such as Walsh, Block-pulse, Laguerre, Cheby-
shev, Fourier and Hermite function have the following in-
tegral property  

0

( ) ( )
t

r r
r r r rs ds P t P Cφ φ ×≈ ∈∫  (6) 

where  is the nonsingular constant matrix, often called 
operational matrix. It depends on both selected orthogonal 
functions and the number r. 

rP

Integrating eq.(1) gives 

0
0 0

( ) ( )
t t

E E A s ds B s ds− = −∫ ∫x ux x  (7) 

Using  eqs.(2), (3) and (4), one can get 

EF − EQ =  ( )r tφ ( )r tφ
0 0

( ) ( )
t t

r rAF s ds BG s dsφ φ+∫ ∫ (8) 

Substituting eq.(6) in eq.(8), yields 

EF − EQ  =AF +BG  ( )r tφ ( )r tφ rP ( )r tφ rP ( )r tφ (9) 

and finally 

AFP−EF=−EQ−BGP (10) 

In this way differential eq.(1) in x(t) is transformed into 
an algebraic eq.(10), which should be solved upon F, and 
when the solution is obtained it should be returned to eq.(2) 
which enables obtaining an approximative solution for x(t). 

In should be noted that eq.(10) represents a so-called 
generalized Lyapunov algebraic equation, showing when it 
has solutions and what this means in terms of the admissi-
ble (consistent) initial subspace of system (1). Let us point 
out now that if E=I then eq.(10) is a discrete-time Lyapunov 
equation and if A=I, then it is continuous-time Lyapunov 
equation, the properties of both of which are well under-
stood, Chen, Hsiao [16]. 

Determination of the system response using the 
Walsh functions and the Kronecker product 

Suppose now that the initial condition, given as eq.(5), 
can be rewritten 

x(0) = [ 0…0] = Q  0x ( )r tφ ( )r tφ (11) 

The Walsh functions, due to their simple form, are espe-
cially attractive from the numerical point of view. In that 
case  should be chosen to form a complete set of or-
thogonal functions. 

2 pr =

Then the Walsh operational matrix  has the form, 
Chen, Shih [21]: 

rP

/ 2 / 2

/ 2 / 2

(1/ 2)
(1/ 2 ) 0

r r
r

r r

P IP r I
− =   

 (12) 

where is the r×r unit (null) matrix, respectively.  (0 )r rI

The recurssion procedure starts with the matrix 1
1
2P = . 

Then eq.(10) can be written as 

AFP − EF = D (13) 

where 

D=−EQ−BGP    D∈ℜ  n r× (14) 

If X is the (p× q) matrix, then v(X) is the (pq×1) matrix 
formed by listing the q columns of the matrix X in order.  

Then eq.(10) can be written as 

Mv(F) = v(D) (15) 
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M

(16) 

where  i , i = 0, 1, 2,…, r-1 are the i-th columns of the 
matrix F and the matrix D, respectively.    

if id

The (rn×rn) matrix M is given by 

T T

T
M A P E I

A P E I
= ⊗ − ⊗
= ⊗ − ⊗

 (17) 

where ⊗ denotes the Kronecker product defined as follows 

11 21 1

12 22 2

1 2

r

T r

r r rr

p A p A p A
p A p A p AA P

p A p A p A

 
 

⊗ =  



L
L

M M L M
L










 (18) 

Similary for E⊗I.  
Now it can be written 

11 21 1

12 22 2

1 2

r

r

r r rr

p A E p A p A
p A p A E p AM

p A p A p A E

−
 −=  
 

−

L
L

M M L M
L

 (19) 

An alternative way for writting eqs.(13), (14) and (18) is 
given in Barnet, [2].  

The solution of eq.(15) can be easily found so 
1( ) ( )F M D−=v v  (20) 

The main difficulty of eq.(17) is that, because of the 
presence of the Kronecker products, a matrix with the di-
mensions (nr×nr) has to be inverted. 

To overcome this difficulty Chen, Hsiao [16], for the 
case of the Walsh functions, Marszalek [42], for the case of 
the Block-pulse functions and Paraskevopulos [52], for the 
case of the Chebyshev polynomials presented an algorithm 
which considerably eleminates the effort of solving eq.(17).  

The second and more serious difficulty with eq.(17) is 
that it may be ill-conditioned or even singular. That it could 
be ill-conditioned follows from the fact that it can be singu-
lar for some nonzero values of the matrices  A i E.  

These cases appear  to be difficult to be detected by es-
tablishing some types of criteria or conditions on the matrix 
M, owing to the complexity of the structure and the de-
pendence of the structure of the matrix M on the number of 
expansion terms r. 

Indeed, consider, for example, the matrix M for the (r+1) 
expansion terms 

1 1

11 21 1 1,1

12 22 2 1,2

1 2 1,

1, 1 2, 1 , 1 1, 1

T
r r

r r

r r

r r rr r r

r r r r r r

M A P E I

p A E p A p A p A
p A p A E p A p A

p A p A p A p A
p A p A p A p A E

+ +

+

+

+

+ + + + +

= ⊗ − ⊗ =

− 
 −
=  
 
 − 

L
L

M M L M M
L
L

 

(21) 

1,
1

, 1 1, 1

 = 1,2,...,

r r q
r

q r r r

M p AM P A p A E
q r

+
+

+ + +

 =  −   (22) 

The above expression shows that, if r is increased by one, 
then all the columns and rows of the matrix M undergo a 
change. This means that, if the matrix  is not invertible, it 
is easy to say whether the matrix  is invertible or not.  

rM
1rM +

Using the attractive shifted Chebyshev polynomials, the 
matrix M may has this form 

2

3 10 04 4
10 1 0 4

11 0 04
0 1 0 0

M

 −
 
 − =
 − 
  

  

which is clearly not singular.  
The example which illustrates the difference in possible 

approximation errors among different classes of orthogonal 
functions is given in Paraskevopoulos [53]. 

We will consider eq.(1) with  and to make it 
tractable  we assume eq.(1) to be regular, eq. 

det 0E =

∆(s) ≡ |sE − A| ≠ 0 

The regularity is equivalent to the existence and the 
uniqueness of the solution x(t), given x(0) and u(t). The 
roots of ∆(s) are called the finite relative eigenvalues of the 
matrix pair (E, A). These are simply the finite zeros of the 
pencil (sE − A).  

The infinite zeros of the matrix pencil (sE−A) are the in-
finite relative eigenvalues of the pencil (E,A).  

The relative spectrum  of the matrix pencil (E,A) is the 
union of finite and infinite zeros. 

The finite is denoted by σ(E,A) spectrum of the matrix 
pencil (E, A). 

The spectrum of the single matrix J is denoted by σ(J). 
The explanation of the mentioned difficulties (a problem 

when eq.(10) has solutions and what this means in the sub-
space of the consistent initial conditions for system (1)), is 
given in Lewis [33], Wong [59]. 

Theorem 1. Let the matrix pencil (E,A) be regular. Su-
posse is a finite relative eigenvalue of the matrix pencil 
(E,A) and  is an eigenvalue of matrix P. Then the gener-
alized Lyapunov eq.(10) has a unique solution for F, for all 
matrices B, G and Q, if and only if:  for all  i and  j. 

iλ
jµ

1i jλ µ ≠

Proof. Since eq.(1) is regular, there is no loss of general-
ity in assuming that it is in the Weierstrass form 

1 1 1J B= +x x& u

u

 (23) 

2 2 2N B= +x x&  (24) 

where J is in the Jordan form and N is the nilpotent matrix 
consisting of the Jordan blocks with the eigenvalue zero. 

Let  and  1
1

n∈ℜx 2
2

n∈ℜx
Based on this, eq.(10) takes the form 

1 1 1 1JF P F Q B GP− = − −  (25) 
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2 2 2 2F P NF NQ B GP− = − −  (26) 

where matrices G and F in the new basis have been por-
tioned to conform to the slow and fast subsystems (23) and 
(24), respectively. 

Eq.(25) is now recognized as a discrete Lyapunov equa-
tion the properties of which are well-known. T has a unique 
solution , for all matrices , G i , if and only if ∈ 
σ(J) and ∈ σ(P), then  ≠ 1. However, σ(J) coin-
cides with σ(E, A). 

1F

jµ
1B

iλ µ
1Q iλ

j

The  continous Lyapunov equation  has a unique solution 
, for all matrices , G i Q , if and only if ∈ σ(N) 

and ∈ σ(P), then - ≠1. However, this is guaranteed 
since N  is nilpotent and P  is nonsingular.   

2F 2B

iλ
2 iλ

jµ jµ

The condition of the Theorem is equivalent to the non-
singularity of any matrix representation of the linear opera-
tor , including the traditional Kronecker 
product representation. Since the matrix P depends on the 
basis set φ(t) selected and on the number of functions r in 
the set, it is clear that all choices of r may not be allowed 
for the  given  matrices E and  A. 

( )f F AFP EF= −

The next result gives an explicit expression for the solu-
tion F  to eq.(10). 

Theorem 2. Suppose that the matrix pencil (E,A) is 
regular and σ(E,A) ∩ σ( ) is an empty set.  1P−

Let ∆(s)=det(sE−A)=  and k is the 
index of the matrix pencil (E,A), i.e. N in eq.(24) satisfies 
the expression  ≠ 0,  = 0).  

1 1
1

1
1 ...n n

ns sα −+ + +

kN

α

1

1kN −

Then the solution to eqs.(25) and (26) is given by 

( )

1

1 1

1

1

1
1 1 1 1

1 1
1

1 12 1

1
1

...

0
0 0
0 00

n

n n

n

n

F H JH J H
KI I

K P P

I K P

α α
α ∆

−

− −
−

− −−

− +

 = × 
  
  

×   
  

      

L
K

MM

 (27) 

2
1

1 2
2 2 2 2

1
2

... k

k

K
K PF H NH N H

K P

−
−

− +

 
 

 = −     
  

M
 (28) 

where 

1 1[ ]H I B≡ ,  1
1

QK G
 ≡   

(29) 

2 2[ ]H N B≡ ,  2
2

QK GP
 ≡   

(30) 

Proof. Write eq.(25) as  and 
eq.(26) as .  

1
1 1 1JF F P H K−− = −

22 2 2F P NF H K− = −
Now the result follows by a trivial modification of the 

derivation in Chen [15]. 

Determination of the system response using the 
Block-pulse functions 

It is well-known that the Walsh functions are closely re-
lated to the Block-pulse functions. The Walsh operational 
matrix of the integraton P may be given in the following 

way Chen at al. [16,18,19]. 

1P WKWr=  (31) 

where  1/r is the test period, W ∈ℜ  is the well-known 
Walsh matrix consisting of +1 and −1 in a dyadic order and 
 K is the Block-pulse matrix of the integration 

r r×

1\ 2 1 1 1
0 1\ 2 1 1
0 0 1\ 2 1

0 0 0 1\ 2

K

 
 
 =  
 
  

L
L
L

M M M L M
L

 (32) 

Using the matrix K instead of the matrix P in the analy-
sis of  eq.(1), one can get 

AFK EF D− =  (33) 

D EQ BG= − − K  (34) 

where the matrices F , G  i K  are the Block-pulse repre-
sentations of state, initial condition, input x(t), x(0) and 
u(t), respectively.  

It was shown in  Marszalek [42] that the calculation of 
the piecewise constant solution of eq.(1) with the matrix K 
is equivalent to applying the trapezoidal rule of the integra-
tion.   

Thus, using the basic results given in  Marszalek [42], 
for X(s) = L[x(t)], one can get 

0
1 1 1
1

( )

2 1 2 (1 ) ,
1

s i
i

i

i

z z

z z xT Tz

∆ ∞
−

=
− − −
−

= =

 −= + 
 +

∑X x

X ∈ℜ
 (35) 

where   is the delay, T = 1/r.   1z−
Applying eq.(35) to eq.(1), written in the s domain, one 

can get, Marszalek [42] 

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( )

1

1

1

0
2 1 1 01 2

1 12 2
,

s

s s

s
i i

Es s E A s B s
z tE z z ET z

T TB z z B z z

z u z u

−

− −

−

− = +
− + − =
+

= + + +

∈ℜ

X X X U

X x

X U

U �

1

)

 (36) 

Then from eq.(36) one can have 

0
( 1i

i
i

E z z
∞

−

=

−∑x − Ex(0) = 

=
0

( 12
i

i
i

T A z z
∞

−

=

+∑x ) +
0

( 12
i

i
i

T B z z
∞

−

=

+∑x )  

(37) 

Equating the coeficients of the like powers of , one 
can get 

iz−

( )1
0 0For : 0 2 2

T Tz E E A B− − = −x x x 0u  (38) 

( ) ( )

0 1

1 0

For , ,... :

2 2i i i i

z z

T TE A B

−

− −− = + +x x x u u 1

 (39) 
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Next, for det(E − 2
T A) ≠ 0, one can have 

0x = 1( 2
TE A −− )  (Ex(0) + 02

T Bu ) (40) 

 

( )
( ) ( )( )

1

1 1

2
, 1,2,.2 2

i

i i i

TE A

T TE A B i

−

− −

= − ⋅

⋅ + + + =

x

x u u ..
 (41) 

ix (i=0,1,…) represents the Block-pulse solution of eq.(1), 
but it is easy now to express the piecewise constant solution 
in terms of the Walsh functions. 

It can be done with 

1( )2F F= W  (42) 

where 0 1[ , ,..., ]rF = x x x . 

Determination of the system response using the 
single-term Walsh functions  

 
Time invariant systems 

The proposed method is a very simple one and can be 
easily implemented on digital computers. It is also highly 
stable because it is based on the trapezoidal rule. 

Rao et al. (1980) and Rao [55] introduced  the single-
term Walsh series (STWS) to remove the inconveniences in 
the Walsh functions (WF) and the Block-pulse functions 
(BPF).  

Palanisamy [48], Palanisamy, Balachandran [49,50] and 
Palanisamy, Rao (1983) introduced the STWS approach to 
the analysis and optimal control of linear and non-linear 
systems. The STWS method, also finds its application in 
the analysis of time varying and non-linear networks and 
soothing circuits, Palanisamy [48].  

The STWS method provides the Block-pulse and dis-
crete solutions of problems for any lenght of time in an easy 
manner. This is not possible with the WF and BPF tech-
niques. 

Consider the linear singular system given by eq.(1). 
With the STWS approach, the given function is ex-

panded as a single-term Walsh series in the normalized time 
interval τ∈[0,1), which corresponds to the interval t∈[0, 1

r ). 

by defninig t = r
τ , r being an integer.  

In the normalized interval, eq.(1) becomes 

( ) ( ) ( )A AE r rτ τ= +x x u& τ

−

 (43) 

Now expanding , x(τ) and  u(τ), in the STWF as ( )τx&

( )τx& = ,  x(τ) =  0 ( )iCΨ τ 0 ( )iBΨ τ

u(τ) =  0 ( )iHΨ τ
(44) 

the following recursive relationship is obtained with E=1/2 
1( / 2 )i iC E A r G−= −  

(1/ 2) ( 1)i iB C i= + x  
x(i) =  ( 1)iC i+ −x

(45) 

where ( 1)i i
A
r= − +x B Hr

= x

G i ,  i = 1,2,… 

The x(i) gives the discrete values of the state and  
gives the BPF values of the state for any lenght of time.  

iB

This is the main advantage of the presented method. 
Even though the matrix E is singular, the difference 
(E−A/2r) turns out to be non-singular. The value of r can be 
selected to be large to increase the accuracy of the results 
and each unit interval consists of  r Block-pulses.  

Time varying  systems 
Let us now consider a linear time-varying singular system 

0( ) ( ) ( ) ( ) ( ) ( ), (0)E t t A t t B t t= +x x u x&  (46) 

with the (n×n) matrix E(t) being singular for any t, so it can 
not be written in a classical form, A(t) is the (n × n) time 
dependent matrix, B is also the (n × m) time dependent ma-
trix, x(t) is the (n × 1) state vector and u(t) is the (m × 1)  
input (control) vector.  

With the STWS approach, the given function is ex-
panded as a single-term Walsh series in the normalized time 
interval τ∈[0,1), which corresonds to the interval t∈[0, 1

r ) 

by defining t = r
τ ,  r being an integer.  

Equation (46), at the normalized interval, becomes 

( ) ( )( ) ( ) ( ) ( )A BE r r
τ ττ τ τ τ= +x x& u

i

−

.

 (47) 

Now by expanding E(τ), A(τ), B(τ), , x(τ) and u(τ) 
in the STWS, as 

( )τx&

( )τx& = C ,   x(τ) =  0 ( )iΨ τ 0 ( )iBΨ τ (48a) 

u(τ) = ,  E(τ) =  0 ( )iHΨ τ 0 ( )iMΨ τ (48b) 

A(τ) = ,    B(τ) =Y  0 ( )iSΨ τ 0 ( )iΨ τ (48c) 

the following recursive relationship is obtained with E=1/2 
1[ / 2 ]i i iC M S r G−= −  (49a) 

(1/ 2) ( 1)i iB C i= + x  (49b) 

x(i) =  ( 1)iC i+ −x (49c) 

where 

[ ( 1) ] / , 1,2,..i i i iG S i Y H r i= − + =x  (50) 

The x(i) gives the discrete values of the state and  
gives the BPF values of the state for any lenght of time. 
This is the main advantage of this method.   

iB

In eq.(49), the matrix  has to be inverted at 
each step and all other operations are matrix additions 
and/or multiplications. The value of r  can be selected to be 
large enough to increase the accuracy of the results and 
each unit interval consists of  r Block-pulses.  

[ / 2 ]i iM S r−
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Appendix A  - Notation 
A – matrix 
a – elements of matrix A 
B – matrix, control or input matrix 
b – elements of  matrix B, positive number 
C – matrix, output matrix 
c – elements of matrix C, positive number 
D – matrix 
d – elements of matrix D, positive number 
E – singular matrix 
e – elements of  matrix E, positive number 
F – matrix 
f – elements of matrix F, function 
G – matrix 
g – elements of matrix G, positive number 
H – matrix 
h – elements of matrix H 
I – unit matrix 
i – current number 
J – matrix, matrix in the Jordan form 
j – index of matrix, scalar, current number 
K – matrix 
M – matrix 
m – positive number 
N – nilpotent matrix 
n – system order 
P – matrix 
p – elements of matrix P, positive number 
p(⋅) – polunomial 
Q – matrix 
q – rank of matrix Q, generaliyed system order, 

positive number 
R  – set of real numbers 
R(s) – polynomial 
r – positive number 
s – complex variable 
S – matrix 
t – time 
U – matrix 
u(t) – input vector, control vector 
v – vector 
V – linear transformation matrix 
W – matrix 

kW  – subspace of consistent initial conditions 
w – vector 
x(t) – state vector 

ix  – output vector 
Z – matrix 
α – real, positive scalar 
β – real, positive scalar 
δ – small positive number 
δ(t) – impulse function 
ε – small positive number 
φ(t) – orthogonal function 
ν – multiplicity 
λ  – complex number, scalar, eigenvalue 
µ – constant, eigenvalue 
π  – constant 

σ([⋅]) – singular value of matrix  [⋅] 
σ{[⋅]} – eigenvalue matrix spectar [⋅] 
τ  – time constant, dimensionless time, time 
ϕ – set of orthogonal functions 
ϕ(t) – time dependent function 
φ – orthogonal function 
∆(s) – characteristic polynomial 

0Ψ  – single-term orthogonal function. 

Particular notations  
ℵ[⋅] – null space of matrix (kernel) 
�  – range of matrix 
(E,A) – matrix pencil degree degree of polynomial 
det[⋅] – matrix determinant 
[⋅] – diagonal matrix 
ind[⋅] – index of  matrix 
rank[⋅] – rank of matrix 
tr[⋅] – trace of  matrix 
⊗ – Kronecker product 
⊕ – direct sum 
Σ  – sum 
�  – given by definition 
≡ – identical 
⇒ – follows 
∈ – belongs 
∀ – for every 
⊆ – subset 
⊂ – real subset 
∩ – intersection 
∪  – union 

Appendix B – Numerical examples: 
On using the Walsh functions 

Example B1.  For  r = 2 one can have 

2

1 1
2 4
1 04

P
 −
 =  −  

 (B1) 

For  r = 4 one can have 

4

1 1 1 02 4 8
1 10 04 8
1 0 0 08

10 08

P

 − −
 
 − =  
 
 
  

0

 (B2) 

Example B2. Consider a linear singular system, in the 
form of eq.(1), where 

0 1
0 0E  =   

   0 0
1 0A  =  − 

0
1
 =   

b (B3) 

with the initial condition  = [ .  0x ]1 0 T

Let the input function u(t) equal 1. To find the solution 
x(t) using the algorithm proposed, one can use eq.(15) dire-
cetly. In this example we are going to use the Walsh func-
tions. For numerical computations we adopt  which 2r =
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gives the matrix P in the following form 

1 1
2 4
1 04

P
 −
 =  
  

 (B4) 

Also u(t) = φ(t), where h = [1  0]. Then the matrix M 
and the vector d, in eq.(15), become 

Th T

0 1 0 0
1 10 02 4

0 0 0 1
1 0 0 04

T TM A P E I= ⊗ − ⊗ =
− 

 − − =  −
 
  

 (B5) 

and 

0
1
2

0
1
4

 
 − =  
 
  

d  (B6) 

Solving eq.(15), one can obtain 

[ ]1000T =f  (B6) 

So, finally 

x1=[1 0]φ(t)=  0 ( )tφ (B7a) 

x2=[0 0]φ(t)=0 (B7b) 

It should be  noted that if r is greater, the results will still 
be the  = 1 and  = 0.  1x 2x

To check, from the state equation =0  and −x2x&
(x

1+u=0, 
are obtained so it is obvious that   and x2x = 2 0) 1=u. But 
since the initial condition  =0, it follows that x2 0(x ) 2= 0, as 
well. Besides that, using the complex domain, it can be 
shown 

X(s) = ( bU(s) =  1Es A −− )

s

1/
0

s 
  

(B8) 

i.e. X (  and = 0.  1 ) 1/s = 2X ( )s
So it follows: x1=1 and x2=0, whic had to be shown.  
Example B3. Let us make a slight change of the previ-

ous example 

1 0
0 1A  =   

,   1/ 4 0
0 0E  =   

(B9) 

Using the method of the previous example and with r=2 
we can use again the Walsh functions, such that 

1 1
2 4
1 04

P
 −
 =  
  

 (B10) 

From eqw.(19) we can obtain the matrix M 

M=
1 1
2 4

1
4

A E A

A E

 − −
 
 −  

=

1 10 04 4
1 10 02 4

1 10 04 4
10 04

 −
 
 

 − 
 
  0


  (B11) 

which is obviously nonsingular.  
It can be shown that eq.(19) may be singular even if the 

system is nonsingular. 
Example B4. Let us take 

4 0
0 0A  =   

   1 0
0 1E  =   

(B12) 

and the matrix P and  r as in the previous example.    
Then 

1 0 1 0
0 1 0 0
1 0 1 0
0 0 0 1

M

− 
 −=  − 

− 

 (B13) 

The fact that the matrix M may be singular or even ill-
conditioned always makes trouble. If for a moment we sup-
pose that the matrix M is nonsingular, then the approach 
based on the orthogonal functions gives an estimatie of the 
solution for any initial condition .  0x

But we must always have in mind that eq.(1) has only  
smooth solutions  whenever  belongs to the subspace of 
the consistent initial conditions W , e.i. x , for the 
given input function u(t), Campbell [7]. In that way we are 
going to have the solutions regardless they exist or not for a 
given initial condition. Particularly, if the input function 
u(t) is piecewise we should not have any distributional re-
sponse, which usually happens in the presence of disconti-
nuity. Of course if the input function u(t) is quite enough 
smooth and belongs to the subspace of the consistent 
initial conditions an approach which ignores the presence of 
impulses in the system solution has obvious advantages.  

0x

k 0 W∈

0x

Example B5. Let us examine the Example B.3, with 

1 0
0 1A  =   

  1/ 4 0
0 0E  =   

(B14) 

By the use of the Walsh functions, the matrix M, for  r=2 
is singular, which can be seen from Example  B.3, but for  
r=4 it is  

4

1 1 10 0 0 04 4 8
1 1 10 0 0 02 4 8

1 1 10 0 0 04 4 8
1 10 0 0 0 0 04 8

1 10 0 0 0 0 08 4
10 0 0 0 0 0 04

1 10 0 0 0 0 08 4
10 0 0 0 0 08

M

 
 
 
 
 − − 
 

− 
=  

− − 
 
 −
 
 − −
 
 −  

0

0

0

 

which is obviously nonsingular.  
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Appendix C - Numerical examples : 
On using  the Block-pulse  functions 

Example C1. Let us consider eq.(1) with 

1 0
0 0E  =   

  b  1 0
0 1A − =   

1/ 2
1

 =   
(C1) 

u(t) = 1(t) 
1 1
2 4
1 04

P
 −
= 
  


  x(0) = 0 (C2) 

The matrices D and M are in the form (r=2, = u =1, 
Q=0) 

0u 1

1 1
4 8
1 1
8 4

D
 −
 =  −  

 (C3) 

1 10 02 4
1 10 02 4

1 0 1 04
10 04

M

 − −
 
 
 =  − 
 

−  0

 (C4) 

So 

1 9 2( ) ( ) 1 050 25
T

F M D−  = = − −  
v v  (C5) 

9 / 50 2 / 25
1 0F − =  − 

 (C6) 

On the other hand, from eq.(42), for T = 1/r = 1/2, one 
can obtain 

0
1/10

1
 =  − 

x   1
13 / 50

1
 =  − 

x (C7) 

and from (43) 

1/10 13/ 50 1 11
1 1 1 12

9 / 50 2 / 25
1 0

F   = =  − − −  

− =  − 




 (C8) 

These results show that the procedure  of solving eq.(1) 
with the Walsh operational matrices may be achieved by 
using very  simple recursive algorithms. Besides, if follows 
from eq.(42) that the recursive schema gives a piecewise 
solution if det(E − 2

T A) ≠ 0. 

Appendix D -  Numerical examples : 
On using the single-term Walsh functions 

Example D1. Let us consider a linear, time invariant 
singular system, given by eq.(1), where 

1 0 2
1 0 2

2 3 2
E

− 
 = −
  

  
1 2 1
2 1 3
0 1 1

B
 
 = − −
  

(D1) 

0 1 2
27 22 17
18 14 10

A
− − 

 =
 − − − 

   u =  
1
0
0

 
 
  

(D2) 

0

0.4123
0.0769
1.2500

 
 =
 − 

x  (D3) 

The exact solution of eq.(1) is given by  Campbell et al. 
[26] 

2
31

2
32

2
33

7 5x ( ) 52 18
14x ( ) 2 113

7  x ( ) 0.54

t

t

t

t e t

t e t

t e t

= − +

= + −

= − − +

 (D4) 

By using eq.(45) and eq.(D.1), the discrete time solution 
x*(t) and the exact solution x(t) are calculated for  m = 100.  

The results are shown in Tables 1 - 3. 

    Table D1. Solution of eq.(45) and eq.(D4) for  ( )1x t

Solution 
No. Time 1x ( )t  

(exact solution) 
1x * ( )t  

(STWS, m=100) 
1 0 0.4123 0.4123 
2 0.5 -0.0343 -0.0348 
3 1.0 -0.4600 -0.4610 
4 1.5 -0.8563 -0.8577 
5 2.0 -1.2115 -1.2137 
6 2.5 -1.5095 -1.5122 
7 3.0 -1.7275 -1.7308 

     Table D2. Solution of eq.(45) and eq.(D4) for  2x ( )t

Solution. 
No. 

Time 2x ( )t  
(exact solution) 

2x * ( )t  
(STWS, m=100) 

1 0 0.0769 0.0769 
2 0.5 1.5029 1.5034 
3 1.0 3.0975 3.0985 
4 1.5 4.9273 4.9288 
5 2.0 7.0854 7.0876 
6 2.5 9.7017 9.7045 
7 3.0 12.9574 12.9607 

    Table D3. Solution of eq..(45) and eq.(D4) for  3x ( )t

Solution 
No. 

Time 3x ( )t  
exact solution 

3x * ( )t  
(STWS, m=100) 

1 0 -1.2500 -1.2500 
2 0.5 -2.4423 -2.4425 
3 1.0 -3.9085 -3.9090 
4 1.5 -5.7569 -5.7577 
5 2.0 -8.1389 -8.1400 
6 2.5 -11.2653 -11.2667 
7 3.0 -15.4308 -15.4324 

 
Example D2. Let us consider a linear, time varying sin-

gular system, given by eq.(46), where 

0 0( ) 1E t t
 =   

  1 1( ) 0 2
tA t − − =  − 

(D5) 



 D.LJ.DEBELJKOVIĆ ET AL.: DYNAMIC ANALYSIS OF LINEAR SINGULAR SYSTEMS USING ORTOGONAL FUNCTIONS 99 

2
1( )
2

teB t
t
 

=  
 

  u = . 0
1
1

= − 
x 


1
0
 
  

(D6) 

The exact solution of eq.(46) is given by 
3

1
2

2

x (1 )
x

t

t
t e t

t e
= + −
= −

 (D7) 

Using eq.(49) and eq.(D7), the discrete solution x*(t) 
and the exact solution are calculated for  m=16 and m=100. 

The results are shown in Tables D4 anf D5.  
The approximated solutions agree quite well with the ex-

act solutions. 

Table D4. Solution of eq.(49) and eq.(D7) for  1x ( )t

Solution 
No. Time 1x ( )t  

(exact solution) 
1x * ( )t  

(STWS, m=16) 
1x * ( )T  

(STWS, m=100) 
1 0.00 1.0000 1.0000 1.0000 
2 0.25 1.5894 1.5894 1.5877 
3 0.50 2.3480 2.3477 2.3480 
4 0.75 3.2828 3.2815 3.2878 
5 1.00 4.4365 4.4335 4.4365 
6 1.25 5.9001 5.8943 5.8917 
7 1.50 7.8292 7.8192 7.8290 
8 1.75 10.4658 10.4495 10.4770 
9 2.00 14.1671 14.1420 14.1665 

 Table D5. Solution of eq.(49) and eq.(D7) for  2x ( )t

Solution 
No. Time 2x ( )t  

(exact solution) 
2x * ( )t  

(STWS, m=16) 
2x * ( )T  

(STWS, m=100) 
1 0.00 -1.0000 -1.0000 -1.0000 
2 0.25 -1.2215 -1.2211 -1.2149 
3 0.50 -1.3987 -1.3977 -1.3987 
4 0.75 -1.5545 -1.5527 -1.6511 
5 1.00 -1.7182 -1.7155 -1.7182 
6 1.25 -1.9278 -1.9238 -1.9211 
7 1.50 -2.2316 -2.2260 -2.2316 
8 1.75 -2.6921 -2.6844 -2.6985 
9 2.00 -3.3890 -3.3787 -3.3887 

Received: 28.02.2002 

 

 

 

 

 

 

Primena ortogonalnih funkcija u dinamičkoj analizi linearnih 
singularnih sistema 

Singularni sistemi predstavljeni su u matematičkom smislu kombinacijom diferencijalnih i algebarskih jednačina, pri 
čemu ove druge predstavljaju ograničenje koje opšte rešenje mora da zadovolji u svakom trenutku. Primera singu-
larnih sistema ima skoro u svim granama nauke i tehnike. Javljaju se često u elektromagnetnim kolima, dinamici ro-
bota i letelica, optimizacionim problemima i u graničnom slučaju singularno-perturbovanih sistema. Sa stanovišta 
elementarne dinamičke analize, uvek je potrebno poznavati njihovo kretanje u prostoru stanja. U klasičnom smislu to 
podrazumeva izračunavanje generalisanih inverzija sistemskih matrica što predstavlja veoma složenu numeričku 
proceduru. U ovom radu dat je jedan drugi prilaz, koji koristeći dobro poznate ortogonalne funkcije pruža dobru 
mogućnost da se, korišćenjem aproksimativnog prilaza baziranog na pomenutim funkcijama, odredi traženo kretanje 
singularnog sistema. Teorijska izlaganja propraćena su sa nekoliko pažljivo odabranih primera. 

Ključne reči: linearni sistemi, singularni sistemi, dinamička analiza sistema, ortogonalne funkcije. 

Application des fonctions orthogonales dans ľanalyse dynamique des 
systèmes singulaires et linéaires 

Les systèmes singulaires sont présentés, mathématiquement, comme la combinaison des équations différentielles et al-
gébriques. Les équations algébriques sont la contrainte pour la solution des équations différentielles. Tels systèmes 
sont souvent appliqué dans les réseaux électro-magnétiques, robotique, dynamique ď aéronefs, problèmes ďoptimisa-
tion et le cas limite des systèmes singulaires et perturbés. Pour ľanalyse dynamique élémentaire, il est nécessaire de 
savoir leur solution dans ľespace ďétat, c'est-à-dire de calculer les inversions généralisées des matrices de système − 
un procédé numériquement très compliqué. Une autre solution est ici proposée, une possibilité de resoudre les équa-
tions de système en utilisant les approximations différentes basées sur les applications des fonctions orthogonales três 
connues. Le discours théorique est suivi par quelques exemples soigneusement choisis.  

Mots-clés: systèmes linéaires, systèmes singulaires, analyse dynamique du système, fonctions orthogonales. 
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