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Triggers of coupled singularities and homoclinic orbits in the 
dynamics of the planetary gear trains 
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Analytic and numerical analysis of the non-linear system dynamics and phase space based on the planetary gear train 
with three teeth satellite has been treated in this paper. Phase portraits for different kinetic parameters with deviation 
properties of eccentric masses distribution have been composed. Furthermore, the disappearance of coupled singu-
larities triggers and eight-shaped homoclinic orbits in the phase plane were analysed along with the characteristics in 
the planetary gear train dynamics. Based on the analytical solutions and numerical results, the nonlinear phenomena 
have been graphically presented by means of the surface of total system energy, portraits of constant energy curves 
and phase trajectories for different system parameters. 
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Introduction 

A general reason for chaotic and stochastic behaviour of 
dynamic systems is the loss of equilibrium stable posi-

tion or motion, which is evident from the exponential dis-
persion of the neighbouring phase trajectories. However 
small excitations and disturbances might be, the representa-
tive point begins to "stray" from one closed curve to an-
other and its position may become optional in time. 

Chaotic and stochastic behaviour are caused by nonline-
arity which, on its part, causes the homoclinic structure*. 
Homoclinic structure produces a mixture of unstableness, 
local diffusion and general cohering. Stable periodic motion 
and equilibrium position may lose their stability or disap-
pear in just a few particular cases [1]: 
– Stable equilibrium position or periodic motion and a 

corresponding unstable motion blend together and dis-
appear, creating a new stable position. 

– Equilibrium state or periodic motion lose their stability, 
simultaneously creating a stable aperiodic motion or 
pass into corresponding two-dimensional torus multi-
plicities with periodic and quasi -periodic "coils" of 
phase trajectories. 

– Stable periodic motion accumulates in one point passing 
into stable equilibrium or stillness, or it blends with the 
equilibrium creating bi-asymptotic curve as a cross sec-
tion of its integral multiplicities.  

– Periodic motion loses its stability and stable periodic 
motion of doubled period occurs simultaneously. 
The last transformation may recur indefinitely, forming 

an absolute series of doubled period bifurcation. 

Planetary gear trains are, generally, dissipative dynamic 
systems operating in a complex dynamic process which 
produces different effects. These effects may occur in many 
various ways and may cause stochastic behaviour in the 
planetary gear train operation. Main generators of nonlin-
earity in case of planetary gear trains may be: rigidity char-
acteristics of the teeth in a wheel, central wheel deforma-
bility, claw couplings and elements of the satellite assem-
bly, dissipative forces within the gear train, defects in ele-
ment construction, load distribution between the satellites, 
lubrication and striking processes in the planetary gear 
trains, etc. All these may be the cause of stochastic behav-
iour of a system. 

In references [2-6,8] the dynamics of planetary gear 
trains has been studied. In this paper, for the adopted dy-
namic model exposed to disturbances characteristic for the 
dynamic process in the gravitational field, the configuration 
of dynamic equilibrium and the structure of the phase por-
trait have been studied. Based on the analytical solutions 
and numerical results, graphic presentations of nonlinear 
phenomena through surfaces of total system energy, por-
traits of constant energy curves and phase trajectories for 
different system parameters, have been given.  

Information acquired from a fundamental monography 
[12] on nonlinear oscillations and a reference [11] about 
coupled singularities trigger, have been used. 

Configuration of dynamic equilibria of a planetary 
gear train dynamic model 

In case of this dynamic model, special attention has been 
given to disturbances characteristic for dynamic processes 
in the gravitational field, so they may be the result of dif-
ferent factors such as: disturbancy forces mainly generated 
by the engagement of the teeth in a wheel, gear wheels and 

__________ 
* Homoclinic structure – structure on a map, or transfer, developed during
cutting in the saddle points of stable and nonstable multiplicities. 
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claw couplings, dissipative forces, defects in element con-
struction and assembling, irregular load distribution on the 
satellites. These disturbances are presented by additional 
masses of loose distribution and the dynamic model shown 
in Fig.1 has been formed, where 1-solar tooth wheel, 2-
satellites, 3-epicycle and h-satellite bearing, and the distur-
bances have been presented by additional masses mi. 

Disturbance "masses" may take different positions de-
pending on the disturbance we wish to analyse and assign 
significance to. Fig.1 shows the distribution of "masses" 
where m1 represents a disturbance caused by irregular cou-
pling of the solar tooth wheel with the satellite, m2 repre-
sents a disturbance caused by defects in the solar tooth 
wheel-construction and assembling, masses m3 and m4 rep-
resent the mass disturbances caused by unequal load trans-
fer, defects in construction and assembling the satellite, and 
mass m5 represents a disturbance due to defective construc-
tion, unhomogeneity of the material, unprecise assembling 
of the satellite bearing and uneven load transfer from the 
satellite. 
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Figure 1. Dynamic model of the planetary gear train 

The system potential energy according to the adopted 
dynamic model (Fig.1) is 
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where m3=m4=m34, r1, rh- divisional (basic) radiuses of the 
solar teeth wheel and the satellite bearing, φ1 and φh- coor-
dinates (the solar teeth wheel angles of rotation- 1 and the 
satellite bearing - h). For the generalized coordinate, φ1 and 
φh are adopted. 

If in the position of equilibrium the function of conserva-
tive holonomic scleronomic system force has its maximum 
(potential energy minimum), the equilibrium position of the 
system is stable, unstable or indifferent in all other cases. 
The Leyen-Dirichlet theorem has been used for the com-
parison, and the criterion of equilibrium and stability result-
ing from the facts stated above has the following form 
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Accordingly, the first deduction of potential energy 
equals zero in different positions and configurations. Table 
1 gives characters of equilibrium positions for different 
mass positions.  

Table 1 

Case 1ϕ  hϕ  Condition 
2

2
p

i

E∂
∂ϕ

 Character of the 
equilibrium position 

m5>m34 < 0 Unstable 

m34>m5+ 2 (m1+m2)r1 > 0 Stable I 1/4  π 0 

m34=m5+ 2 (m1+m2)r1 = 0 Indifferent 

m5<m34 < 0 Unstable 

m5>m34+ 2 (m1+m2)r1 > 0 Stable 

m5=m34+ 2 (m1+m2)r1 = 0 Indifferent 
II 1/4  π π  

m5=m34 < 0 Unstable 
m5<m34 >0 Stable 

m5>m34+ 2 (m1+m2)r1 > 0 Unstable 

m5=m34+ 2  (m1+m2)r1 =0 Indifferent 
III 5/4  π 0 

m5=m34 >0 Stable 
m5>m34 >0 Stable 

m34>m5+ 2  (m1+m2)r1 < 0 Unstable IV 5/4  π π  

m34=m5+ 2  (m1+m2)r1 =0 Indifferent 

Analysis of the dynamics of a planetary gear train 
model  

During nonlinear system stability testing, the first thing 
is to determine the conservative system equilibrium posi-
tion, and then to examine the motion of the system around 
each equilibrium position. The change in the dynamic sys-
tem parameter value may cause a change in the number of 
system equilibrium positions or their stability. Local motion 
of a system is characterized by some properties characteris-
tic for linear systems and it is therefore justified to use mi-
norization and linearization in such cases. 

A conservative system is usually a rough approximation 
of real nonlinear systems, and it gives satisfactory results 
up to a certain point only [1]. The mechanical energy con-
servation law is an important characteristic of conservative 
systems. 

For the conservative system of the defined planetary gear 
train model, the overall energy equals 

k pE E h E+ = =                                  (2) 

where Ek- kinetic energy of the system, E- total energy of 
the system. 

The kinetic energy of the studied model (Fig.1) is 
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where I1, I2- mass inertia axial moments of the solar teeth 
wheel and the satellite, r1, rh – basic radius of the solar teeth 
wheel and the satellite bearing, φ1, φ2, φh- angular velocities 
of the solar teeth wheel, satellite and satellite bearing. 

Considering the wheel contact, the following relation be-
tween the angular velocities of the teeth wheels is deduced 

.
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21 1 22
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where ijk - transfer relations. 
The transfer relations of the studied reductor model 
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wheel joints are 4.42. Taking into account the possibility of 
replacement, φ1=3.42φh. These two replacements give the 
following form to the kinetic energy expression 

2
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For the planetary gear train kinetic parameters: m1=0.5 kg, 
m2=0.4 kg, m34=0.1 kg, m5=0.3 kg the total system energy 
expression was obtained 
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Qk equals zero in the singular points. We can notice that 
the singular points of the integral curves appear in the 
points of the abscissa φh, where the potential energy has ex-
treme values. Figs.2-4 confirm this for the given initial 
conditions. The mass perturbations are expressed in kilos 
(kg), (the unit will not be mentioned further on). 

 
a) 

 
 

b) 

Figure 2. a) potential energy curves and b) phase and constant energy 
curves for m1=0.5, m2=0.4, m34=0.3 and for different initial conditions 

Points 1-4 in Fig.2a represent the stable equilibrium po-
sitions. On the phase portrait or the portrait of constant en-
ergy curves (Fig.3, points 1-4) there are singular, central 
type points. Points 5-8 represent the unstable equilibrium 
positions and singular, unstable saddle points in the phase 

plane (Fig.3 points 5-8). 
Fig.2b presents the phase trajectory and the constant en-

ergy curves Ei, as shown in Fig.2a. If the straight line E7, 
for the given initial conditions, is situated completely above 
the potential energy curve, the branches of the integral 
curve spread from infinity to infinity without cutting the ab-
scissa in any point. The motion with the representative 
point moving along such curves from the initial position φ0 
and at the velocity φ0 towards infinity, corresponds to the 
situation when the system revolves in one direction. 
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Figure 3. Constant energy curves family for the initial conditions as in 
Fig.2 
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Figure 4. Graph of the system total energy surfaces for m1=0.5, m2=0.4, 
m34=0.1 and m5=0.3 
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When constant energy is given to a system in an initial 
moment, the chosen straight line Ei=const. intersects, makes 
the tangents at the maximum and minumum values (E6, E5, 
E2 and E1, Fig.2a) and cuts the potential energy curve at 
the bending point, which gives more than one phase curve 
isolated branches in the phase portrait, as shown in Fig.2b. 
For Ep>Ei of φ, there are no trajectories in the phase plane. 
The phase trajectories exist for all the other values of φ 
where Ep<Ei, and they can be: closed curves Fig.2b (E1, 
E2, E3, E4), separatresses (E5, E6) and open branches E7. 
Separatresses are those phase trajectories which intersect 
each other in the saddle-type points (E5, E6, Fig.2b) and 
separate different kinds of curves. When the constant en-
ergy Ei given to the system in the initial moment grows, the 
obtained phase curves include the separatress and corre-
spond to the periodic solutions. As the constant energy Ei 
decreases, the closed curves, included by the separatress, 
are obtained in the gives case. 

Angle of rotation [rad] 

The closed trajectories correspond to the periodic mo-
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tion. Figs.5-8 present perturbation-deviation masses of the 
system, different from the case given above: m1=0.5, 
m2=0.2, m34=0.1 and m5=0.5. 

 

Figure 5. Potential energy graph m1=0,5, m2=0,2, m34=0,1 and m5=0,5 

 

Figure 6. Constant energy curves family for a series of conditions as in Fig.5 

 

Figure 7. Graph of the total energy surface for m1=0.5, m2=0.2, m34=0.1 
and  m5=0.5 

It is important to consider all the perturbance factors in-
duced by eccentric masses deviative properties. There is 
however, quantitative difference from the previous case in 
the size of some masses, though the sum of the deviative 
masses stays the same. Should the graphs presenting the 
dependence of potential energy on the generalized coordi-
nate, Figs.2 and 5, be compared, a difference between the 
curve shape and the number and type of extreme values will 
be noticed. 

Fig.8 presents the phase trajectories in the phase plane 

for different values of the constant energy Ei (Fig.5) and 
different areas of the generalized coordinate. 

The singular points of integral curves appear in the 
points with the abscissa φ where the potential energy has 
extreme values. 
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c) 

Figure 8. Phase trajectories in the phase plane for different values of the 
constant energy: a) for the constant energy area E1 Fig.5 and the angle of 
rotation 2-5 [rad], b) for the constant energy area E2 Fig.5 and the angle of 
rotation 0.5-2.2 [rad], c) for the constant energy area E3 Fig.5 and the 
angle of rotation 5-8 [rad] 

This can be confirmed by comparing two planes of the 
system dynamics state (φ, Ep(φ)) and (φ, ) with the same 
abscissa φ. Fig.8 presents integral curves and their singu-
larities for different initial conditions and potential energy 
changes. 

ϕ&

The potential energy has two local minimums and one 

Angle of rotation [rad] 

Angle of rotation [rad] Angular velocity [1/s] 
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maximum in Fig.8a. Four branches of the integral curves 
pass through the singular saddle-type point S (homoclinic 
point), the abscissa of which corresponds to the potential 
energy maximum abscissa φ. This phase trajectory is called 
the separating line or the separatress because it is found 
where one trajectory shape transforms into another, separat-
ing trajectory branches of different shapes. Other trajecto-
ries do not intersect this point which corresponds to the un-
stable position of the system equilibrium in the phase plane. 
The energies E larger than the local maximum energies E0, 
the phase trajectories consist of branches above the separa-
tress. If E<E0, the phase trajectories are closed branches ro-
tating around the centre C1 or C2 and both of them, the mo-
tion corresponding to the periodic oscillations. This exam-
ple confirms the existence of the trigger singularities which 
can be a cause of planetary gear train working unstableness. 

Fig.8b shows the integral curves with saddle singulari-
ties, a closed and an opened branch. Fig.8c shows the inte-
gral curves with two saddles, two opened and a closed 
branch. 

Figs.9 to 23 show the surfaces of the system total energy 
given by eq.(2) and the integral curves (phase trajectories) 
families in the phase plane and in the Descartes rectangular 
coordinate system (φ, , E) for different system parame-
ters, initial conditions and system total energy that induces 
motion.  

ϕ&

 
Figure 9. Graph of the surfaces of total energy for  m1
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Figure 15. Graph of the surface of total energy for m34=0.1 and m5=0.5 

 

Figure 16. Constant energy curves family for the initial conditions as in Fig.15 

 
Figure 17. Graph of the surface of total energy for m1=0.1, m2=0.2, 
m34=0.7,  m5=0.5 

 

Figure 18. Constant energy curves family for the initial conditions as in Fig.17 
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Figure 19. Graph of the surface of total energy for m1=0.1, m5=0.05 
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Figure 20. Constant energy curves family for the initial conditions as in Fig.19 
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Figure 21. Graph of the surface of total energy for m1=0.3 and m5=0.5 
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Figure 22. Constant energy curves family for the initial conditions as in Fig.21 



 R.KNEŽEVIĆ, S.CVETKOVIĆ: TRIGGERS OF COUPLED SINGULARITIES AND HOMOCLINIC ORBITS IN THE DYNAMICS OF THE PLANETARY… 35 

 
Figure 23. Graph of the surface of total energy and the portrait of constant 
energy curves for m1=0.3 and m3=0.5 

During this, a significant change has occurred in the 
graph shape, potential energy, total energy surface and the 
family of constant energy curves portraits. In Fig.9 only one 
position, the position of stable equilibrium, is distinct, dur-
ing discrete change of these parameters. In Fig.11, seven 
equilibrium positions can be noticed, three saddle singulari-
ties and three center type singularities. The change of pa-
rameter numbers and values produces a change of singular-
ity numbers with distinct, eight-shaped separatresses 
(Figs.12, 18 and 20). 

Points 1 and 2 in Fig.21 correspond to the stable equilib-
rium positions and are center-type points on the phase por-
trait (Fig.22, points 1,2), while point 3 corresponds to the 
unstable equilibrium position and is an unstable, saddle-ty-
pe singular point in the phase plane (Fig.22, point 3). Points 
4 and 5 also correspond to the unstable equilibrium position 
but are areas with the peak in the phase plane (Fig.22). 

 

Figure 24. Integral curves in the phase plane 

Fig.24. gives the integral curves corresponding to a par-
ticular area of constant energy (from 0.5 to max., Fig.21). 
For Emax, the integral curve consists of four branches, pass-
ing through the saddle-type point (see Fig.24). For Ei<E 
(Fig.24) the phase trajectories are open branches left and 
right from the saddle-type point. When Ei=E (constant en-
ergy presented by E line in Fig.24) the integral curves in the 
phase plane are curves with the peak on the abscissa, corre-
sponding to the bending point, with the unstable equilib-
rium position (see Fig.24). 

Figs.2-24 show that the potential energy function E0 has 
the minimum integral curve passing into the singular point-
-center. When E>E0 the closed integral curves surround the 
singular center-type point. These singular points are stable 

centers, since potential energy is at the minimum (Fig.2, 
Fig.8, etc.) judging from the above given Lagrange theo-
rem. Slight disturbances around those positions give peri-
odic movement. 
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For the maximum E, the integral curves have four 
branches, passing through the saddle-type singular point, 
with the abscissa corresponding to the generalized maxi-
mum potential energy coordinate abscissa ( this is shown in 
all the constant energy curves graphs). What we have in this 
case is: asymptotic movement towards the homoclinic un-
stable equilibrium position or aperiodic unstable movement.  

When the potential energy function has a bending point, 
the first and the second derivative equal zero, i.e. when the 
tangent to the energy curve at that point is horizontal, as the 
integral curve in the phase plane, a curve with the peak ap-
pears on the abscissa, which corresponds to the bending 
point. This is depicted in Figs.22 and 24 and the equilibrium 
position that points 4 and 5 correspond to is unstable. 

Angular velocity [1/s] Angle of rotation [rad] 

Concluding remarks 
The analysis of graphs 2-24 imposes the following con-

clusions. 
At discrete change in the values of dynamic systems 

mass disturbances the number of equilibrium positions and 
configurations and their stability also changes. This change 
of the structure and character of the nonlinear system equi-
librium, due to the change in system parameters, is the sub-
ject of the bifurcation theory. Such parameter significations, 
where movement quality and typology characteristics are 
changing, are called critical or bifurcatic meanings. 

With a discrete change of the values of the disturbance 
parameters of the masses mi, the singular representative 
point corresponding to the system stability (Fig.9), loses its 
balance and disintegrates into three points, one saddle [12] 
and in its vicinity two singular center-type points as, new 
stable equilibrium  positions  appear as well as a new eight-
-shaped separatress (see Ref [11], (Figs.13,15,22)), or 
should we consider the change of the same parameters, the 
number of equilibrium positions disintegrates from three 
(Fig.18) into six centers and five saddles, i.e. a number of 
triggers of singularities appear. Through the analysis of the 
graphs it was observed that with a discrete change of mass 
parameters, both numerically and in quantity, the centers 
lose their stability and the triggers of singularities are 
formed (see Ref. [7]). 
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The potential energy curves with two isolated points and 
the change of their position can be noticed with different 
parameter meanings (Figs.2,4,6,12,18,20). For different pa-
rameters, the phase curves with a "peak" in which the equi-
librium position is unstable appear (Figs.22 or 24). Less 
distinct "peaks" are in Figs.14 and 18 where unstable equi-
librium positions may occur. 

Angle of rotation [rad] 

To enable small oscillations around the equilibrium posi-
tion and to make presumptions about small oscillations 
valid, it is necessary that the potential energy has its mini-
mum even in the equilibrium position, which is a condition 
for that position to be a stable equilibrium position.  

According to the "deviation disturbances" positions as 
given in Table 1, it is obvious that besides the stable equi-
librium positions, unstable and indifferent positions also ex-
ist. This  does not depend only on planetary gear train 
"mass disturbances" position, but on particular parameter 
values as  well (Table 1). The initial conditions determine 
whether the movement is periodic or aperiodic, and the 
very character of the phase trajectory. 
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This concept about the character of the characteristic 
nonlinear dynamics of the planetary gear train model, en-
ables the continuation of research of the real planetary gear 
train dynamics under working conditions when it compul-
sively rotates under the effects of compulsive coupling 
driving source. 

Uneven operations such systems in real working regime 
and noise are due to the existence of system characteristic 
nonlinearities. 

Note: We take this opportunity to thank the manager of 
this project, Prof. Katica Stevanović-Hedrih, PhD for her 
useful suggestions and consulting regarding the formulation 
of this work. The research presented here is a part of Minis-
try of Science, Technology and Development of the Repub-
lic of Serbia projects, N01616 (Real problems in mechanics) 
and N01828 (Active structure dynamics and control). 

References 

[1] MOON,C.M., (1987), Chaotic Vibrations, An Introduction for Ap-
plied Scientists and Engineers, John Wiley & Sons, New York, 309 
(Mun, F., Хаотические колебанија, Mir, Moskva, p.305 (in Rus-
sian)). 

[2] HEDRIH (STEVANOVIĆ),K., KNEŽEVIĆ,R. Prilog izučavanju di-
namike planetarnih prenosnika, Naučnotehnički pregled, 1998, 
vol.XLVIII, no.6, pp.26-36. 

[3] HEDRIH (STEVANOVIĆ),K., KNEŽEVIĆ,R. Analiza stabilnosti 
planetarnog prenosnika, Naučnotehnički pregled, 1999, vol.XLIX, no.2, 
pp.29-36. 

[4] HEDRIH-STEVANOVIĆ,K., CVETKOVIĆ,S., KNEŽEVIĆ,R. Es-
timation of planetary reductor sensitivity. Facta Universitatis, Series 
Mechanical Engineering, University of Niš, 1999, vol.1, no.6, 
pp.683-694. 

[5] HEDRIH-STEVANOVIĆ,K., CVETKOVIĆ,S., KNEŽEVIĆ,R. Pla-
netarni prenosnik u turbulentnom prigušenju, Naučnotehnički pre-
gled, 2000, vol.XLX, no.3, pp.46-50. 

[6] KNEŽEVIĆ,R. Nelinearni fenomeni u dinamici planetarnih prenos-
nika. doktorska disertacija, Mašinski fakultet, Niš, 2001, p.177. 

[7] HEDRIH-STEVANOVIĆ,K. Izabrana poglavlja iz teorije nelinear-
nih oscilacija. Mašinski fakultet, Niš, 1977 (1975), p.180. 

[8] HEDRIH-STEVANOVIĆ,K., KNEŽEVIĆ,R., CVETKOVIĆ,S. Dy-
namics of Planetary Reductor with Turbulent Damping. International 
Journal Nonlinear Sciences ond Numerical Simulation, 2001, vol.2, 
no.3, pp.265-275. 

[9] HEDRIH-STEVANOVIĆ,K.(1998), Vectorial Method of the Kinetic 
Parameters Analysis of the Rotor with Many Axes and Nonlinear Dy-
namics, Parallel General Lecture, Proceedings of the 3rd International 
Conference on Nonlinear Mechanics, Shanghai, 1998, pp.42-47. 

[10] HEDRIH-STEVANOVIĆ,K. Nonlinear dynamics of a rotor with a 
vibrating axis, and sensitive dependence on the initial conditions of 
the forced vibration of a heavy rotor. International Journal Nonlinear 
Oscillations, 2000, vol.3, no.1, pp.129-145. 

[11] HEDRIH-STEVANOVIĆ,K. Trigger of coupled singularities. 6th 
Conference on Dynamical Systems-Theory and Applications, Edi-
tors,J. Awrejcewicz and all., Lodz, 2001, pp.51-78 (Plenary Lecture). 

[12] GUCKENHEIMER,J., HOLMES,PH., (1983), Nonlinear Oscilla-
tions, Dynamical Systems, and Bifurcations of Fields, Springer-
Verlag, p.461. 

Received: 10.10.2002

Trigeri spregnutih singulariteta i homokliničke orbite u dinamici 
planetarnih prenosnika 

Na primeru planetarnog prenosnika s tri zupčanika satelita, analitički  i numerički je proučavana nelinearna di-
namika sistema i struktura faznog prostora. Sastavljeni su fazni portreti za različite kinetičke parametre devijacionih 
svojstava rasporeda ekscentričnih masa i analizirana pojava iščezavanja trigera spregnutih singulariteta i homoklini-
čkih orbita oblika broja osmice u faznom prostoru i proučavana svojstva dinamike planetarnih prenosnika. Na os-
novu analitičkih rešenja i numeričkih rezultata sastavljeni su grafički prikazi nelinearnih fenomena pomoću površi 
ukupne energije sistema, portreta krivih konstantne energije i faznih trajektorija za različite parametre sistema. 

Ključne reči: planetarni prenosnik, nelinearna dinamika, površ ukupne energije sistema, kriva konstantne energije, 
homoklinička tačka, fazna trajektorije, fazni portret. 

Déclencheurs des singularités accouplées et de ľorbite homoclinique 
en dynamique des engrenages planétaires 

La dynamique non-linéaire du système et la structure de ľespace de phase sont étudiées numériquement et ana-
lytiquement prenant pour ľexemple ľengrenage planétaire à trois pignons satellites. Les portraits des phases pour les 
différents paramètres cinétiques des caractéristiques de déviation pendant la distribution de masses excentriques sont 
composés et puis on a analysé la disparition des déclencheurs des singularités accouplées et des orbites homocliniques 
en forme de numéro 8 dans ľespace de phase. Les caractéristiques de la dynamique des engrenages planétaires sont 
ensuite étudiées. Les solutions analytiques et les résultats numériques étaient la base pour les présentations graphi-
ques des phénomènes non-linéaires à ľaide de la surface de ľénergie totale ďun système et des portraits des curbes de 
ľénergie constante et des trajectoires de phase pour les paramètres différents ďun système. 

Mots-clès: engrenage planétaire, dynamique non-linéaire, surface de ľénergie totale ďun système, courbe de ľénergie 
constante, point homoclinique, trajectories de phase, portrait de phases. 

 



 R.KNEŽEVIĆ, S.CVETKOVIĆ: TRIGGERS OF COUPLED SINGULARITIES AND HOMOCLINIC ORBITS IN THE DYNAMICS OF THE PLANETARY… 37 

 


	Triggers of coupled singularities and homoclinic orbits in the dynamics of the planetary gear trains
	Introduction
	Configuration of dynamic equilibria of a planetary gear train dynamic model
	Analysis of the dynamics of a planetary gear train model
	Concluding remarks

	Trigeri spregnutih singulariteta i homoklinièke �
	Déclencheurs des singularités accouplées et de �

