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Single-frequency nonlinear vibrations of antisymmetric angle-ply 
laminated plates 

Goran Janevski, BSc (Eng)1) 

In this paper single-frequency vibrations of antisymmetric angle-ply laminated rectangular plates freely supported 
along the edges are analysed. By using Krylov-Bogolyubov-Mitropol’skij’s method, the asymptotic approximation of 
the two-parameter family of solutions in the first approximation is given. A numerical example includes the analysis 
of single-frequency plate vibrations in stationary and non-stationary conditions under the activity of  time-
dependence outer impulses. Amplitude-frequency and phase-frequency characteristics of the plate in stationary and 
non-stationary conditions for different laminate characteristics are presented graphically. 
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Introduction 

L AMINATED composite vibrations have been the object 
of consideration during the past five decades. The equa-

tions of laminated plate vibrations are basically identical to 
those for a single-layer orthotropic plate. Jones [1] gives the 
fundamentals of the tension-deformation state of laminated 
plates and the differential equations of the plate linear vi-
brations. By invoking the Galerkin method, Ghaza-rian and 
Locke [2] determine equations of laminated plate vibrations 
which are simple for analysis. Gorman and Ding [3] deter-
mine the value of eigenfrequencies for different angles of 
lamination, number of lamina, boundary conditions and dif-
ferent ratios of the Young’s modulus. Khdeir and Reddy [4] 
consider the free vibrations of laminated composite plates 
for different boundary conditions, comparing the Kirchhoff 
theory with the applied one. Tylikovski [5] considers the 
stability of the nonlinear symmetrical laminated cross-ply 
plates. The equation of the cross-ply laminated plate vibra-
tion is derived by introducing the Airy function.  

A widely applicable asymptotic method of [6] for solv-
ing nonlinear vibra-tions continuum problems is applied in 
the papers of Pavlović [10] and K.Hedrih and others (1974), 
(1978), (1986). Pavlović (1984) has published a study about 
the analysis of resonant regime two-frequency vibrations of 
shallow shells; K.Hedrih and the others (1986) analyse 
four-frequency vibrations of thin shells with an initial ir-
regularity. 

In this paper the single-frequency vibrations of the lami-
nated plate under time dependent external force effect are 
considered. Also, the influence of mechanical and other 
characteristics on the amplitude and phase of the asymp-
totic solution is given in the first approximation. 

Problem formulation  
The components of the deformation tensor and the com-

ponents of the curvature of the plate middle surface are de-
fined as follows 
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where u(x,y,t), v(x,y,t) are the in-plane displacements 
whether w(x,y,t) is a displacement normal to the middle 
surface of the plate or not. 

The model is applicable to a plate that satisfies the fol-
lowing conditions:  
a) Thickness of the plate is significantly small, 
b) Plate thickness is either uniform or varies slowly so that 

the three-dimensional stress effects are ignored, 
c) Normals of the material to the original reference surface 

remain straight, as well as the normal to the deformed 
reference surface, 

d) Аpplied transverse loads are distributed over the plate 
surface areas, and  

e) Support conditions are such that no significant extension 
of the midsurface can occur. 
The membrane force, moments of bending and torsion mo-

ment in the cross section along the axes can be presented as 
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The relation between the forces and the moments in the 
middle surface of the plate is expressed by the equation 
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The matrix of stiffness [C] for antisymmetric angle-ply 
laminates has the form 
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and the matrices of extensional stiffness [A], coupling stiff-
ness [B] and bending stiffness [D] are defined as 

[ ] [ ]

[ ]

11 12 16

12 22 26

66 16 26

11 12

12 22

66

0 0 0
0 ,   0 0

0 0 0

0
0

0 0

A A B
A A A B B

A B B

D D
D D D

D

  
  = =  
    

 
 =  
  






4θ

+

4θ

+

+

+

 (5) 

The elements of the matrix of stiffness are defined as 
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where h is the thickness of the plate and Q  is the reduced 
in-plane stiffness of an individual lamina. 
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The reduced in-plane stiffnesses of an individual lamina 
are expressed in terms of the lamina principal material 
properties [1] 
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where  is the angle of lamina and Eθ 1, E2, G12 and ν12 are 
the major Young’s modulus, minor Young’s modulus, the 
shear modulus and major Poisson ratio, respectively.  

Differential equations of the plate vibration are obtained 
provided that the forces and the moments in the coordinate 
direction are balanced dynamically 
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where ρ is the density of the plate material, β is the damp-
ing coefficient and q(x,y,t) is the external disturbing force. 

From eq.(3) the components of the moment of bending 
as well as the moment of torsion can be expressed in terms 
of transverse displacement of the middle surface of the 
plate 
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The function of tension ( , , )
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From eqs.(8), (11) and (12), the components of the de-
formation tensor can be expressed in terms of the function 
of tension 
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Substituting eqs.(7) and (8) into the third equation of the 
system eq.(6) and including eq.(13), after its differentiation, 
into the left side of eq.(10) gives 
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Eqs.(14) and (15) are the differential equations of the 
plate vibration. By solving eqs.(14) and (15), bearing in 
mind the boundary and initial conditions, one can determine 
the transverse displacements of the middle surface w(x,y,t) 
of the laminated plate, as well as the function of tension 
ψ(x,y,t). Also according to eqs.(7), (8) and (13), all the nec-
essary tensors of the deformation components, force com-
ponents and moments are determined. Eqs.(14) and (15) are 
identical to those given in the reference [2]. 

Single-frequency vibrations of antisymmetric 
laminated angle-ply plates 

Let us consider the plate vibrations described by the sys-
tem of differential eqs.(14) and (15). We presume that the 
disturbing force q(x,y,t) is acting on the system. The force 
is 2π -periodical in θ1(t) with the constant amplitude  in 
the form  
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small positive parameter. For the laminated plate, freely 
supported along the edges, the boundary conditions are  
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Let initial conditions be 
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where ( , ) sin( )sin( ) i ji jw x y x y
a b
π π

=  are any normal func-

tions and pij and qij are real numbers. According to the 
boundary and initial conditions (eqs.(19) and (20)) we pre-
sume that, in the single frequency regime of the plate vibra-
tion transverse displacement w(x,y,t), the solution of the 
system of eqs.(14) and (15) would be in the form 
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where is an unknown function of time, which will be 
determined from the equation of vibration. 
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where λ=a/b is the ratio of  the plate sides. 
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Multiply eq.(14) by w11(x,y)dxdy, after substituting the 
disturbing force eq. (18) and expressions eqs.(21) and (22) 
in their right and left side respectively, to integrate by the 
plate surface ( , ). If we introduce the 
substitution 

(0, )x a∈ (0,y∈ )b

1
1

( )( ) f tt
h

ξ =  (23) 

after the integration, we will obtain a differential equation 
in the unknown function  1( )tξ
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Eq.(24) represents the differential equation of the com-
pulsive vibration of the plate in the single-frequency regime 
with the frequency given by eq.(25).  

For the composition of the asymptotic approximations of 
the solution of the perturbed vibration eq.(24), which corre-
sponds to the single-frequency vibrations, it is indispensa-
ble that , where ω1( ) srtν ω≈ sr is is the circular frequency 
“unperturbed” vibration. Suppose the following conditions 
are fulfilled (Mitropol’skij and Mossenkov [7], Hedrih [9]): 
a) in the unperturbed system, undamped harmonic oscillation 

with the frequency ωsr, depending only on two arbitrary 
constants, are possible to occur,  

b) a unique solution of eq.(24), corresponding to the equi-
librium state in the unperturbed system, is the trivial so-
lution w(x,y,t)=0, 

c) in the unperturbed system, there are no internal resonant 
states, i.e. ωsr≠(p/q) ωmn where m,n=2, 3, 4, .... and p and 
q are mutually prime numbers. 
With these assumptions, the asymptotic solution of the 

equation of perturbed vibrations is [6] 
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where τ=εt is the “slowly-changed time” and, 
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1 1 1, , ,ju aτ θ ϕ , ( ) (2
1 1 1, , ,ju aτ θ ϕ ) , ... are the periodical 

functions with the following arguments: θ1 and φ1 with the 
period 2π; the amplitude and phase of solution (eq.(28)) can 
be found from differential equations 
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where A1, B1, A2, B2, ... are the unknown functions in the 
“slowly-changed time” and amplitude and phase. These 
functions can be determined from the supposed solution of 
(eq.(28)) in eq.(24) and equalizing the coefficient by the 
same harmonics. Staying at the first approximation, the so-
lution of eq.(24) will have the form 
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where the differential equations in the first approximation 
will be 
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Numerical analysis of compulsive vibrations of the 
laminated plate in stationary conditions 

If expressions (31), which are the first approximation 
differential equations of the solution (30), equal zero, i.e. 
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the equations, which define the relationship of the amplitude 
and phase of the asymptotic solution (30), will be obtained. 

Solving these equations in the amplitude a1=f1(ν) and the 
phase φ1= f2(ν) we obtain the amplitude-frequency and the 
phase-frequency characteristics of the laminated plates vi-
bration for the stationary conditions. For all numerical ex-
amples the following characteristics of the laminated plate 
are taken: the dimensions of the plate a=2 m, b=1 m; the 
thickness of the plate h=1 cm; the specific density of the 
plate material ρ=2600 kg/m3; the damping coefficient β=6 s-1 
and the amplitude of disturbance P1

*=1300 N/m2. The 
changes of the amplitude-frequency and phase-frequency 
characteristics due to the changes of some laminate charac-
teristics are given in the following examples. 

The amplitude-frequency characteristics of four-laye-
red  antisymmetric  laminate  with  lamina  orientation 
30°/-30°/30°/-30° and thickness 0.2h/0.3h/0.3h/0.2h while 
changing the relation of longitudinal and transverse 
modulus of elasticity (E1/E2=5;10;40) are shown in Fig.1a. 
With the relation E1/E2 increasing, the amplitude-frequency 
curves are getting displaced to higher amplitudes and lower 
frequencies. The frequency region in which, for the same 
frequencies of the external force, there is a possibility of 
three stationary states (two are stable and one unstable) is 
getting displaced to lower frequencies. This is a frequency 
region between the resonant jumps. The examination of the 
phase frequency characteristics shown in Fig.1b gives the 
same conclusions. 

In the next example the laminate analysis for the ratio 
E1/E2=10, and for the same orientation of individual lamina 
30°/-30°/30°/-30° is performed. During  the analysis, the 
thickness of laminae is changed. The amplitude-frequency 
and phase-frequency characteristics for different thick-
nesses are shown in Fig.2. It is obvious that with decreasing 
of the external lamina thickness and increasing of internal 
lamina thickness, the amplitudes have lower values and the 
frequency curves shift to the higher frequencies of the ex-
ternal disturbing force. 
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igure 1. Amplitude-frequency (a) and phase-frequency (b) characteristics for a different ratio E1/E2 (1-E1/E2=5, 2- E1/E2=10, 3-E1/E2=40) 
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Figure 2. Amplitude-frequency (a) and phase-frequency (b) characteristics for a different thicknesses of laminae 
                    (1-0.4h/0.1h/0.1h/0.4h, 2-0.3h/0.2h/0.2h/0.3h, 3-0.2h/0.3h/0.3h/0.2h) 
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Figure 4. Amplitude-frequency (a) and phase-frequency (b) characteristics 
for different angles of laminae (1-ϕ=30°, 2-ϕ=45°, 3-ϕ=60°, 4-ϕ=75°) 

Numerical analysis of compulsive vibrations of the 
laminated plate in nonstationary conditions 

Eqs. (31) are the first approximation differential equati-
ons of the asymptotical solution of differential equation 
(24). Numerical solving of these equations by means of the 
Runge-Kutta method (the fourth order), gives amplitude 
frequency characteristics of a single frequency regime of 
the laminated plate vibration in nonstationary conditions. 
The dependence of these curves on certain laminate charac-
teristics change is given in the following examples. 

The amplitude-frequency characteristics of the four-la-
yered laminate (30°/-30°/30°/-30°, 0.2h/0.3h/0.3h/0.2h) for 
different ratios of the longitudinal and transverse modulus 
of elasticity are shown in Fig.5. The amplitude-frequency 
characteristics at linear increasing of the external force fre-
quency are shown in Fig.5a. Passing through the resonant 
state is realized by decreasing the external force frequency 
as in Fig.5b. On the basis of both diagrams, it can be con-
cluded that by the increase of the ratio E1/E2, the maxi-
mums of the amplitudes are growing too, and are being dis-
placed towards lower frequencies. 

The amplitude-frequency characteristics for different thi-
cknesses of longitudinal and transverse lamina orientation 
with E1/E2=10 are shown in Fig.6. It is obvious that with 
the increase of the internal lamina thickness, the maximums 
of the amplitudes are decreasing. 

The influence of the number of laminae on amplitude-
frequency characteristics in the nonstationary state is shown 
in Fig.7. At the ratio E1/E2=10, it is taken that the total 
thickness of the longitudinal laminae is the same as the 
thickness of the transverse laminae (by h/2). For two-la-
yered laminate it is (30°/-30°, 0.5h/0.5h), for four-layered 
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Figure
5.  Amplitude-frequency characteristics for a different ratio E1/E2 (1-E1/E2=5, 2- E1/E2=10, 3-E1/E2=40) 

 
a) 

 
b) 

Figure
6.  Amplitude-frequency characteristics for different thicknesses of laminae (1-0.4h/0.1h/0.1h/0.4h, 2-0.3h/0.2h/0.2h/0.3h, 3-0.2h/0.3h/0.3h/0.2h) 
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nate (30°/-30°/30°/-30°, 0.25h/0.25h/0.25h/0.25h) and for six-layered laminate (30°/-30°/30°/-30°/30°/-30°, 0.1h/ /0.15h/0.25h/0.25h/0.15h/

0.1h). 
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lami It is ev

ident that with th

e increase of
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 maxi

mu

ms

 o
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e amplitudes are decreasing. 

The influence of the angle of laminae on am

plitude-fre-

quency  characteris

t
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in 
Fig

.8. It is evid
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gle, the maximums of the amplitudes are decreasing. 

Conclusions 
Based on the analysis of amplitude-frequency

 character-

istics for single-frequency regim

e

 of the l

a

minat

e

d plate vi

-

brations in the stationary and nonstationary conditions we 
can conclude: 
– with the in

crease o

f the ratio of the lo ng itu dinal and 
transverse modulus of elastic

i

ty E1/E2, the absolute v al-
ues of vibrat ion amplitudes increase, 

– in the four-layered lam inates where the laminae orienta-
tion is  30°/-30°/ 30°/-30°, the amplitudes of vibration are 
larger at lower frequenc

ies with

 th e increase of the inter-
nal laminae thickness, and  

– with the increase of the lamina number, and the sam e 
thickness of the longitudinal and t ransverse laminae, th e 
amplitudes are decreasing, 

– with the increase of the angles of laminae, the ampli-
tudes are decreasing. 
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Figure 8. Amplitude-frequency characteristics for different angles of laminae (1-
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Jednofrekventne nelinearne oscilacije antisimetričnih ugaonih 
lamelastih ploča 

Analizirane su jednofrekventne oscilacije antisimetrične ugaone lamelaste ploče pravougaonog oblika, slobodno 
oslonjene na svojim krajevima. Date su asimptotske aproksimacije dvoparametarske familije rešenja u prvoj aprok-
simaciji, korišćenjem metode Кrilova-Bogoljubova-Мitropoljskog. Numerički primer obuhvata analizu oscilovanja 
ploče u stacionarnim i nestacionarnim uslovima pod dejstvom vremenski zavisne spoljašnje pobude. Grafički su pri-
kazane amplitudno-frekventne i fazno–frekventne karakteristike oscilovanja ploče u stacionarnim i nestacionarnim 
uslovima za različite karakteristike lamelata. 

Ključne reči: Nelinearne oscilacije, lamelasti kompoziti, asimptotska metoda, amplituda, faza, frekvencija, jednofre-
kventnost. 

Oscillations non-linéaires à fréquence unique chez les plaques 
laminées, angulaires et antisymètriques 

Le papier analyse les oscillations à fréquence unique chez les plaques laminées, angulaires et antisymétriques en 
forme rectangulaire, appuées librement sur deux bouts. Les approximations asymptotiques de la groupe de solutions 
à deux paramètres en première approximation sont données en utilisant la méthode de Кrylov-Bogolybov-Мitro-
pol’skij. Ľ exemple numérique comprend ľanalyse des oscillations de la plaque dans les conditions stationnaires et 
non-stationnaires sous ľeffet de ľexcitation extérieure dépendante de temps. Les caractéristiques en fréquence ďam-
plitude et en fréquence de phase des oscillations de la plaque dans les conditions données sont présentées par la voie 
graphique pour les caractéristiques différentes des lamelles. 

Mots-clés: oscillations non-linéaires, composites laminés, méthode asymptotique, amplitude, phase, fréquence, fréque-
nce unique. 
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