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Single-frequency nonlinear vibrations of antisymmetric angle-ply
laminated plates

Goran Janevski, BSc (Eng)Y

In this paper single-frequency vibrations of antisymmetric angle-ply laminated rectangular plates freely supported
along the edges are analysed. By using Krylov-Bogolyubov-Mitropol’skij’s method, the asymptotic approximation of
the two-parameter family of solutions in the first approximation is given. A numerical example includes the analysis
of single-frequency plate vibrations in stationary and non-stationary conditions under the activity of time-
dependence outer impulses. Amplitude-frequency and phase-frequency characteristics of the plate in stationary and
non-stationary conditions for different laminate characteristics are presented graphically.
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Introduction

AMINATED composite vibrations have been the object

of consideration during the past five decades. The equa-
tions of laminated plate vibrations are basically identical to
those for a single-layer orthotropic plate. Jones [1] gives the
fundamentals of the tension-deformation state of laminated
plates and the differential equations of the plate linear vi-
brations. By invoking the Galerkin method, Ghaza-rian and
Locke [2] determine equations of laminated plate vibrations
which are simple for analysis. Gorman and Ding [3] deter-
mine the value of eigenfrequencies for different angles of
lamination, number of lamina, boundary conditions and dif-
ferent ratios of the Young’s modulus. Khdeir and Reddy [4]
consider the free vibrations of laminated composite plates
for different boundary conditions, comparing the Kirchhoff
theory with the applied one. Tylikovski [5] considers the
stability of the nonlinear symmetrical laminated cross-ply
plates. The equation of the cross-ply laminated plate vibra-
tion is derived by introducing the Airy function.

A widely applicable asymptotic method of [6] for solv-
ing nonlinear vibra-tions continuum problems is applied in
the papers of Pavlovi¢ [10] and K.Hedrih and others (1974),
(1978), (1986). Pavlovi¢ (1984) has published a study about
the analysis of resonant regime two-frequency vibrations of
shallow shells; K.Hedrih and the others (1986) analyse
four-frequency vibrations of thin shells with an initial ir-
regularity.

In this paper the single-frequency vibrations of the lami-
nated plate under time dependent external force effect are
considered. Also, the influence of mechanical and other
characteristics on the amplitude and phase of the asymp-
totic solution is given in the first approximation.

Problem formulation

The components of the deformation tensor and the com-
ponents of the curvature of the plate middle surface are de-
fined as follows
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where u(x,y,t), v(x,y,t) are the in-plane displacements

whether w(x,y,t) is a displacement normal to the middle

surface of the plate or not.
The model is applicable to a plate that satisfies the fol-

lowing conditions:

a) Thickness of the plate is significantly small,

b) Plate thickness is either uniform or varies slowly so that
the three-dimensional stress effects are ignored,

¢) Normals of the material to the original reference surface
remain straight, as well as the normal to the deformed
reference surface,

d) Applied transverse loads are distributed over the plate
surface areas, and

e) Support conditions are such that no significant extension
of the midsurface can occur.

The membrane force, moments of bending and torsion mo-
ment in the cross section along the axes can be presented as

N’L M,\f
{N} = Ny ! {M} = M,v (2)
N, M,

The relation between the forces and the moments in the
middle surface of the plate is expressed by the equation
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The matrix of stiffness [C] for antisymmetric angle-ply
laminates has the form

(4, 4, 0 0 0 B,]
/%Z ‘4H 0 0 O Zg%
(j _ 0 O ‘466 l%ﬁ 1326 0
[C]= )
0 0 B, D, D, O0
0 0 B, D, D, O
_B16 Bze 0 0 Dss_

and the matrices of extensional stiffness [A], coupling stiff-
ness [B] and bending stiffness [D] are defined as

[gl /£2 O 0 0 Z%G
[A]=|4, 4, 0| [B]=|0 0 B,
0 0 4 By By O ©)
[%1 1%2 0
[D]z D, D, O
0 0 D

The elements of the matrix of stiffness are defined as

hi2
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~hl2

where h is the thickness of the plate and Q.j is the reduced
in-plane stiffness of an individual lamina.

0, =0, cos* 0+ 2(0,, +20 )sin® Ocos? 0+ Q,, sin* 6
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The reduced in-plane stiffnesses of an individual lamina

are expressed in terms of the lamina principal material
properties [1]
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where 0 is the angle of lamina and Ej, E,, G, and v;, are
the major Young’s modulus, minor Young’s modulus, the
shear modulus and major Poisson ratio, respectively.

Differential equations of the plate vibration are obtained
provided that the forces and the moments in the coordinate
direction are balanced dynamically
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where p is the density of the plate material, 8 is the damp-
ing coefficient and q(x,y,t) is the external disturbing force.

From eq.(3) the components of the moment of bending
as well as the moment of torsion can be expressed in terms
of transverse displacement of the middle surface of the
plate

o*w 0w
szBIG}/xy_Dllg_ 128)}_2l
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The function of tension
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From egs.(8), (11) and (12), the components of the de-
formation tensor can be expressed in terms of the function
of tension

2 2
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Substituting egs.(7) and (8) into the third equation of the
system eq.(6) and including eq.(13), after its differentiation,
into the left side of eq.(10) gives
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s.(14) and (15) are the differential equations of the
te-vibration. By solving eqgs.(14) and (15), bearing in
ind the boundary and initial conditions, one can determine
e transverse displacements of the middle surface w(x,y,t)

of the laminated plate, as well as the function of tension
w(x,y,t). Also according to egs.(7), (8) and (13), all the nec-
essary tensors of the deformation components, force com-
ponents and moments are determined. Egs.(14) and (15) are
identical to those given in the reference [2].

Single-frequency vibrations of antisymmetric
laminated angle-ply plates

Let us consider the plate vibrations described by the sys-
tem of differential egs.(14) and (15). We presume that the
disturbing force q(x,y,t) is acting on the system. The force

is 27 -periodical in #;(t) with the constant amplitude P~ in
the form

q(x,y,t)zgﬁ*sinﬁl-wll(x,y) (18)

where % =v,(#) is the instantaneous frequency and ¢ is a

small positive parameter. For the laminated plate, freely
supported along the edges, the boundary conditions are
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where w (x, ») =sin(zx)sin(%y) arg any normal func-
a

tions and p; and g; are real numbers. According to the
boundary and initial conditions (egs.(19) and (20)) we pre-
sume that, in the single frequency regime of the plate vibra-
tion transverse displacement w(x,y,t), the solution of the
system of egs.(14) and (15) would be in the form

wix, y,1) = f([O)w (x,) f(t)Sln( )Sln( Yy (@)

where f'(¢) is an unknown function of time, which will be
determined from the equation of vibration.

Taking eq.(16) into consideration, the function L(w,w) is
evaluated in the form

Y(x,p,t)= —f (t)cos(—)+
y
32 P —f (t)cos( )+
Ak +2 k) Zx. 7Y
i aan L We st

where 12=a/b is the ratio of the plate sides.

(19)
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Multiply eq.(14) by wy,(x,y)dxdy, after substituting the
disturbing force eq. (18) and expressions egs.(21) and (22)
in their right and left side respectively, to integrate by the
plate surface (xe(0,a),y<(0,b)). If we introduce the

substitution

JAQ)
h

a()= (23)

after the integration, we will obtain a differential equation
in the unknown function & (¢)

Er il =2 &+ alt R sing, (24)
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Eq.(24) represents the differential equation of the com-
pulsive vibration of the plate in the single-frequency regime
with the frequency given by eq.(25).

For the composition of the asymptotic approximations of
the solution of the perturbed vibration eq.(24), which corre-
sponds to the single-frequency vibrations, it is indispensa-
ble that v,(¢) ~ @, , where a,, is is the circular frequency

“unperturbed” vibration. Suppose the following conditions

are fulfilled (Mitropol’skij and Mossenkov [7], Hedrih [9]):

a) in the unperturbed system, undamped harmonic oscillation
with the frequency @, depending only on two arbitrary
constants, are possible to occur,

b) a unique solution of eq.(24), corresponding to the equi-
librium state in the unperturbed system, is the trivial so-
lution w(x,y,t)=0,

c) in the unperturbed system, there are no internal resonant
states, i.e. w,#(p/q) wmy Where m,n=2, 3, 4, .... and p and
g are mutually prime numbers.

With these assumptions, the asymptotic solution of the

equation of perturbed vibrations is [6]

& =a,cos(0, + @) +eu(r,0,,a, )+

2. (2
+¢& uj( )(T,Gl,al,(pl)+...

(28)
where t=¢t is the “slowly-changed time” and,
u¥(7,0,,a,0,), u'?(z,6,,a,,0,), ... are the periodical
functions with the following arguments: 8, and ¢; with the

period 27; the amplitude and phase of solution (eq.(28)) can
be found from differential equations

da
7; =eA(r,a,0)+& A, (t,a,0) +....

do,

el il +eB/(r,a,0,)+ & B,(7,a,p) +......

where A;, By, Ay, B,, ... are the unknown functions in the
“slowly-changed time” and amplitude and phase. These
functions can be determined from the supposed solution of
(eg.(28)) in eq.(24) and equalizing the coefficient by the
same harmonics. Staying at the first approximation, the so-
lution of eq.(24) will have the form

& = a, cos(vit+¢y) (30)

where the differential equations in the first approximation
will be

2 o~ cosg,
dt w, +v; (31)
a6, _ 3o

B .
+——1 sing,
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dt 0t 8wt

Numerical analysis of compulsive vibrations of the
laminated plate in stationary conditions

If expressions (31), which are the first approximation
differential equations of the solution (30), equal zero, i.e.

P
-Ba, - :

w; +V,

cosg, =0,

(32)
o, -V, Sy

P .
—+a’ +————sing, =0,
8w,

a (@, +vy)
the equations, which define the relationship of the amplitude
and phase of the asymptotic solution (30), will be obtained.

Solving these equations in the amplitude a;=f;(v) and the
phase ¢,= f,(v) we obtain the amplitude-frequency and the
phase-frequency characteristics of the laminated plates vi-
bration for the stationary conditions. For all numerical ex-
amples the following characteristics of the laminated plate
are taken: the dimensions of the plate a=2 m, b=1 m; the
thickness of the plate h=1 cm; the specific density of the
plate material p=2600 kg/m®; the damping coefficient f=6 s
and the amplitude of disturbance P,"=1300 N/m’. The
changes of the amplitude-frequency and phase-frequency
characteristics due to the changes of some laminate charac-
teristics are given in the following examples.

The amplitude-frequency characteristics of four-laye-
red antisymmetric laminate with lamina orientation
30°/-30°/30°/-30° and thickness 0.2h/0.3h/0.3h/0.2h while
changing the relation of longitudinal and transverse
modulus of elasticity (Ei/E,=5;10;40) are shown in Fig.la.
With the relation E{/E; increasing, the amplitude-frequency
curves are getting displaced to higher amplitudes and lower
frequencies. The frequency region in which, for the same
frequencies of the external force, there is a possibility of
three stationary states (two are stable and one unstable) is
getting displaced to lower frequencies. This is a frequency
region between the resonant jumps. The examination of the
phase frequency characteristics shown in Fig.1b gives the
same conclusions.

In the next example the laminate analysis for the ratio
E./E,=10, and for the same orientation of individual lamina
30°/-30°/30°/-30° is performed. During the analysis, the
thickness of laminae is changed. The amplitude-frequency
and phase-frequency characteristics for different thick-
nesses are shown in Fig.2. It is obvious that with decreasing
of the external lamina thickness and increasing of internal
lamina thickness, the amplitudes have lower values and the
frequency curves shift to the higher frequencies of the ex-
ternal disturbing force.






v;=100+15t

Figure5. Amplitude-frequency characteristics for a different ratio Ei/E, (1-E1/E,=5, 2- E1/E,=10, 3-E4/E,=40)

v 0+15t
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Non-stationary Four-Frequency analysis Forced Vibrations of Thin

Jednofrekventne nelinearne oscilacije antisimetri¢nih ugaonih
lamelastih ploca

Analizirane su jednofrekventne oscilacije antisimetricne ugaone lamelaste plofe pravougaonog oblika, slobodno
oslonjene na svojim krajevima. Date su asimptotske aproksimacije dvoparametarske familije resenja u prvoj aprok-
simaciji, kori§¢enjem metode Krilova-Bogoljubova-Mitropoljskog. Numeri¢ki primer obuhvata analizu oscilovanja
ploce u stacionarnim i nestacionarnim uslovima pod dejstvom vremenski zavisne spolja$nje pobude. Graficki su pri-
kazane amplitudno-frekventne i fazno—frekventne karakteristike oscilovanja ploce u stacionarnim i nestacionarnim
uslovima za razli¢ite karakteristike lamelata.

Kljucne reci: Nelinearne oscilacije, lamelasti kompoziti, asimptotska metoda, amplituda, faza, frekvencija, jednofre-
kventnost.

Oscillations non-linéaires a fréquence unique chez les plaques
laminées, angulaires et antisymetriques

Le papier analyse les oscillations a fréquence unique chez les plaques laminées, angulaires et antisymétriques en
forme rectangulaire, appuées librement sur deux bouts. Les approximations asymptotiques de la groupe de solutions
a deux paramétres en premiére approximation sont données en utilisant la méthode de Krylov-Bogolybov-Mitro-
pol’skij. I’ exemple numérique comprend Panalyse des oscillations de la plaque dans les conditions stationnaires et
non-stationnaires sous leffet de 'excitation extérieure dépendante de temps. Les caractéristiques en fréquence d’am-
plitude et en fréquence de phase des oscillations de la plaque dans les conditions données sont présentées par la voie
graphique pour les caractéristiques différentes des lamelles.

Mots-clés: oscillations non-linéaires, composites laminés, méthode asymptotique, amplitude, phase, fréquence, fréque-
nce unique.
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