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Finite time stability of linear discrete systems: 
retrospective of results  

Dragutin Lj. Debeljković, PhD (Eng)1) 

A detailed chronological review of the results concerning finite time stability of linear discrete systems has been given 
along with numerous definitions. Through selectively chosen theorems the most recently published and up to date re-
sults have been exposed, specifying the conditions of stability and instability of linear discrete systems in free and 
forced regime. Most of the results are given in the form of sufficient conditions for this stability concept. 
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Introduction 

P ractical matters require that we concentrate not only on 
the system stability (e.g. in the sense of Lyapunov), but 

also on the boundaries of system trajectories. A system 
could be stable but completely useless if it possesses unde-
sirable transient performances. Thus, it may be useful to 
consider the stability of such systems with respect to certain 
subsets of statespace, which are a priori defined in the 
given problem. Furthermore, it is of particular significance 
to analyze the behavior of dynamical systems exclusively 
over a finite time interval.  

These boundness properties of system responses, i. e. the 
solution of system models, are very important from the en-
gineering point of view. Realizing this fact, numerous defi-
nitions of the so-called technical and practical stability were 
introduced. Roughly speaking, these definitions are essen-
tially based on the predefined boundaries for the perturba-
tion of initial conditions and the allowable perturbation of 
the system response. In the engineering applications of con-
trol systems, this fact becomes very important and some-
times crucial, for the purpose of characterizing in advance, 
in quantitative manner, possible deviations of the system 
response. Thus, the analysis of these particular boundness 
properties of solutions is an important step, which precedes 
the design of control signals, when finite time or practical 
stability control is concerned.  

Chronological review of recently published results 
A specific concept of discrete time systems, practical 

stability operating on finite time interval, was investigated 
by Hurt (1967) with a particular emphasis on the possibili-
ties of error arising in the numerical treatment of results.  

A finite time stability concept was, for the first time, ex-
tended to discrete time systems by Michel and Wu (1969). 
Practical stabilty or “set stability”, throughout estimation 
system trajectory behavior on finite time interval was given 
by Heinen (1970, 1971). He was the first who gave neces-
sary and sufficient conditions for this concept of stability, 

using the Lyapunov approach based on the “discrete Ly-
apunov functions” application. 

Even more detailed analysis of these results considering 
different aspects of discrete time systems practical stabilty 
as well as the questions of their realization and controlla-
bily, was given by Weiss (1972).  

The same problems were treated by Weiss and Lam 
(1973), who extended them to the class of nonlinear com-
plex discrete systems.  

Efficient sufficient conditions of finite time stability of 
linear discrete time systems expressed through norms 
and/or matrices were derived by Weiss and Lee (1971).   

Lam and Weiss (1974) were the first who applied the so-
-called concept of “final stability” on discrete time systems 
whose motions are scrolled within the time varying sets in 
the state space. 

Some simple definitions connected to sets representing 
difference equations or at the same time discrete time sys-
tems, were given by Shanholt (1974). Only the sufficient 
conditions are given by the established theorems. These re-
sults are based on the Lyapunov stability and can be used, 
in a way, for a finite time stability concept, for which rea-
son they are mentioned here.  

Grippo and Lampariello (1976) have generalized all 
foregoing results and given the necessary and sufficient 
conditions of different concepts of finite time stability in-
spired by definitions of practical stability and instability, 
earlier introduced by Heinen (1970). 

The same authors applied the before-mentioned results 
in the analysis of “large-scale systems”, Grippo, Lampa-
riello (1978). 

Practical stabilty with settling time was for the first time 
introduced by Debeljković (1979.a) in connection with the 
analysis of different classes of linear discrete time systems, 
general enough to include time invariant and time varying 
systems, systems operated in free or forced operating re-
gimes, as well as the systems whose dynamical behavior is 
expressed through the so-called “functional system matrix”. 
In the mentioned paper, the sufficient conditions of practi-
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is the finite difference.  
Definition 1. Function V(k,x(k)) is said to posses the 

property Γ if the vector ∇V(k,x(k)) is unique regardless of 
the particular path taken when going from one specific 
point to another in state space , Michel, Wu (1969). Rn

Next, let 
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with the function f(⋅,⋅) in the linear combination presented 
in eq.(3). 
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For the time-invariant sets it is assumed: are 
bounded, open sets.  

( )S ⋅

The closure and boundary of  are denoted by ( )S ⋅ ( )S ⋅  and 

, respectively, so: ( )S ⋅∂ ( ) ( )\  S( )S S⋅ ⋅ ⋅ ( )
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complement of . ( )S ⋅
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The set  denotes the set of all alowable ini-
tial states and S  the corresponding set of disturbances.  

,S S Sα α ⊂

ε

The sets are connected and a priori known.  , ,S S Sα β

λ(·) denotes the eigenvalues of the matrix (·).  
Λ is the maximum eigenvalue. 
We, also, define the open set Sδ such that Sδ  ⊆ Sγ with 

the following property  
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where 
\S S Sρ β=  (24) 

We introduce the set  S* such that  

{ }*
1, ( ) : ( ) \ , NS k k x k S S S kβ δ α −= ∈ ∩x  (25) 

Instead of general sets, let the sets be defined as  
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The consequences are as follows 
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Stability definitions 
Definition 2. System (1) is stable w.r.t. {α, β, k0, kN, 

||(⋅)||}, α ≤ β, if for any trajectory x(k) the initial condition 
||x(k0)|| < α, implies that  ||x(k)|| < β for ∀k ∈ KN. 

Definition 3. System (1) is quasi-contractively stable 
w.r.t. {α, β, γ, k0, kN, ||(⋅)||}, α ≤ β < γ, if for any trajectory 
x(k) with the initial condition ||x(k0)|| < α, the following 
conditions are satisfied 

i) stable w.r.t to {α, γ, k0, kN, ||(⋅)||} 
and 

ii) there exists a moment kp∈ [k0, (k0+kN)[, such that  
||x(k)|| <β for ∀k∈ ]kp, (k0+kN)]. 

Definition 4. System (1) is contractively stable w.r.t. {α, 
, γ, kβ 0, kN, ||(⋅)||}, α < β ≤ γ, if for any trajectory x(k) with 

the initial condition ||x(k0)|| < α, the following conditions 
are satisfied 

i) stable w.r.t to {α, γ, k0, kN, ||(⋅)||} 
and 

ii) there exists a moment kp∈ [k0, (k0+kN)[, such that 
||x(k)|| <β  for ∀k∈ ]kp, (k0+kN)]. 
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Definition 5. System (2) is  stable w.r.t {α, β, ε, k0, kN, 
||(⋅)||}, α ≤ β, if for any trajectory  x(k) with the initial con-
dition ||x(k0)|| < α and the condition ||f(k)|| ≤ ε, for ∀k ∈ K, 
x(k) ∈ {Sβ \ Sα} follows that  ||x(k)|| < β  for ∀k ∈ KN. 

Definition 6. System (2) is quasi-contractively stable 
w.r.t. {α, β, γ, ε, k0, kN, ||(⋅)||}, α ≤ β < γ, if for any trajec-
tory x(k) with the initial condition ||x(k0)|| < α and the con-
dition ||f(k)|| ≤ ε, for ∀k ∈ K, x(k) ∈ {Sγ \ Sα}, the following 
conditions are satisfied 

i) stable w.r.t to {α, γ, ε, k0, kN, ||(⋅)||} 
and 

ii) there exists a moment kp∈ [k0, (k0+kN)[, such that 
||x(k)|| <β  for ∀k∈ ]kp, (k0+kN)]. 

Definition 7. System (2), is quasi-contractively stable 
w.r.t. {α, β, γ, ε, k0, kN, ||(⋅)||}, β < α ≤ γ, if for any trajec-
tory  x(k) with the initial condition ||x(k0)|| < α, and the 
condition ||f(k)|| ≤ ε, for ∀k∈K, x(k)∈ {Sγ \Sβ}, the follow-
ing conditions are satisfied 

i) stable w.r.t to {α, γ, ε, k0, kN, ||(⋅)||}  
and 

ii) there exists a moment kp∈ [k0, (k0+kN)[, such that 
||x(k)|| <β for ∀k∈ ]kp, (k0+kN)]. 

The first three definitions concern the systems working 
in the free operating regime and the rest the systems work-
ing in the forced operating regime.  

In the sequel we present some theorems which give suf-
ficient conditions for the systems to be considered on the 
finite time interval, Michel, Wu (1969). 

Stability theorems 
Theorem 1. System (1) is stable w.r.t {α, β, k0, kN, ||(⋅)||}, 

α  < β, if there exists a function V(k, x(k)): KN  × → , 
which is bounded for ∀k ∈ K

R n R
N and for all bounded values 

x(k) and if there exists a function φ(k) which is bounded on 
KN, such that the following conditions are satisfied 
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Proof. The proof is based on contradiction. 
Let x(k) denote a given trajectory of the system given in 

eq.(1), at time t the initial point is a state which satisfies the 
given initial condition ||x(k0)|| <α. Assuming that there ex-
ists a discrete instant (moment) kr ∈ KN  the first such that 
||x(kr)|| ≥ β.  Then, there exists a discrete moment  k2, k2 = 
=(kr – 1), k2 ∈ KN, such that . 
Then, there exists a discrete moment k

2|| ( ) || || ( 1) ||rk k β= − <x x

p ∈ KN  such that x(kp) 
is the last point for which one can write ||x(kp)|| <α. More-
over, there exists a discrete moment k1, k1 = (kp + 1), k1 ∈ KN, 
such that ||x(k1)|| = ||x(kp + 1)|| ≥ α. From the hypothesis i), as 
the first condition of Theorem 1, one can derive 

k0 ≤ kp < k1< k2 < kr (34) 

Which leads to a logical conclussion that 
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but we must remember that eq.(36) is still valid. Hence, 
eq.(41) shows the contradiction with respect to the defini-
tion of V , so the basic assumption concerning 
the initial moment k

,( )
2( )m
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r is wrong. This means that there is no 
discrete moment kr which belongs to the discrete time in-
terval KN such that  ||x(kr)|| >β. 

Since this argument is independent of the chosen x(k0) 
and bearing in mind that the proof has been taken for an ar-
bitrary chosen trajectory x(k), which emanates from set Sα, 
it is obvious that the Theorem  is proved. ■ 

Theorem 2. System (1), is quasi-contractively stable 
w.r.t. {α, β, γ, k0, kN, ||(⋅)||}, α < β < γ, if there exists a func-
tion V(k, x(k)): KN  × → , which is bounded for ∀k ∈ 
K
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Theorem 3. System (1) is quasi-contractively stable 
w.r.t. {α, β, γ, k0, kN, ||(⋅)||}, β  < α < γ, if there exists a 
function V(k, x(k)):  KN  × → , which is bounded  for 
∀k ∈ K

R n R
N and for all bounded values x(k) and if there exist 

functions φ1(k) and φ2(k) which are bounded on KN, such 
that the following conditions are satisfied 

i)  
|| ( ) || ( ) /

2, ,N

k q
q k

γ α ρ
β ρ

∆ < − =
≥ ∀ ∈Κ >
x

(47) 

ii)  
( ) 1 , ( ) ( )

, { \N

V k k k
k Sγ

φ∆ <

∀ ∈Κ ∈

x
x }S

(48) 

iii)
( ) 2

( )

     , ( ) ( )

, { \N

V k k k

k Sγ β ρ

φ

−

∆ <

∀ ∈Κ ∀ ∈

x

x }S

1

) i i i )

 

(48) xii) � � )

k ) k ) )k)1)��) ) ) ) ) k)kk)xk)
1)�� )

)

)

)

)k
k
)



 D.LJ.DEBELJKOVIĆ: FINITE TIME STABILITY OF LINEAR DISCRETE SYSTEMS: RETROSPECTIVE OF RESULTS 57 

The proofs of Theorems 2-6 are basically in concagre-
ment with those of the Theorem 1, and for the sake of brev-
ity are omitted here. The reader should consult the refer-
ence Michel, Wu (1969), with a remark that the following 
relation should be used in proofs 
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where  is defined in eq.(20). ( , ( )V k k∆ f x
Author’s original contributions, which expand the con-

cept of practical stability with settling time on general and 
particular classes of discrete time systems are presented in 
the sequel. 

Basic results−recapitulation 
Some of the earlier results, given in Debeljković (1979.a, 

1993) are presented. 

General theorems of practical stabilty with settling time of 
discrete systems 

Let the systems (1-3) be defined on the discrete time in-
terval KN. 

Definition 8. System (1), is practically stable with the 
settling time ks, u w.r.t. {k0, KN, Sα, Sβ, Sγ}, Sα ⊂ Sβ, Sγ ⊂ Sβ, 
if and only if 
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Theorem 7. System (1) is practically stable with the set-
tling time ks, w.r.t. {k0, KN, Sα, Sβ, Sγ}, α <β < γ, if there ex-
ists a function V(k, x(k)): KN  × → , which is bounded 
for ∀k ∈ K
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N  and for all bounded values ||x|| and if there ex-
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Debeljković (1979.a). 
Proof. Let us show that eqs.(79) and (80) guarantee the 

condition i) of Definition 8. 
The proof is based on contradiction. 
Let us take any system trajectory which emanates for 

any point M which belongs to the set Sα. If we assume that 
for some moment k1, , the first one on the 
above mentioned set, the condition  x(k

1 \ s
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Using the definition for ( ) ( )M k⋅V  and eq.(79), one can get 
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Using eq.(80) we finally get 
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This inequality can be achieved only and only if 
. But this result is in contradiction with the 

basic assumption. Therefore, since the moment k
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arbitrarily from the discrete time interval , it fol-
lows 

\ s
NΚ Κ

0 0

0

( , , ) ,

\ ,s
N N

k k S

k S
β

α

∈

∀ ∈Κ Κ ∀ ∈

x x

x
 (86) 

If we assume again that system (1) is not practically sta-
ble with the settling time ks, then at least there is one cer-
tainly one discrete moment  k2, , for which 2! s

Nk∃ ∈Κ

2 0 0 2( , , ) , s
Nk k S kδ∉ ∀ ∈Κx x  (87) 

Then 

( )

( )
2

0

2 2 0 0

1

2

, ( ) ( , )

, ( ) ,
j k

s
N

j k

V k k V k

V j j k
= −

=

= +

+ ∆ ∈Κ∑

x x

x
 (88) 

Using the definition for ( ) ( )M k⋅V  and eq.(79), one can get 

( )
2

0

1

2 2 0 2, ( ) ( ) ( ),
j k

s
NM

j k

V k k V k j kα φ
= −

=

< + ∈∑x Κ  (89) 

Using eq.(81) we finally get 

( )2 2 2 2 2, ( ) ( ) ( ), s
m mV k k V k V k kδ ξ< = ∈x NΚ

Κ

 (90) 

Eq.(90) can be satisfied only and if only x(k2, k0, x0) ∉ 
Sδ. But this result is in contradiction with the starting as-
sumption. This fact demands that, for the discrete moment 

 the following condition is satisfied 2
s
Nk ∈Κ

0 0( , , ) , s
Nk k S kδ∈ ∀ ∈x x  (91) 
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Since 
Sδ  ⊆ Sγ, (92) 

then 

0 0( , , ) , s
Nk k S kγ∈ ∀ ∈x x Κ  (93) 

which concludes the proof. ■ 
Theorem 8. A system is practically stable with the set-

tling time ks, w.r.t. {k0, KN, Sα, Sβ, Sγ, Sε}, α <β >γ, if there 
exists a function V(k, x(k)): KN  × → , with the prop-
erty Γ, which is bounded for ∀k ∈ K

R n R

R
N and for all bounded 

values ||x|| if there exist functions φ1(k): → i φn R 2(k): 
→ , which are bounded for all values k ∈ KR n R N-1 and if 

the following conditions are satisfied 

i)  
( ) 1

*

, ( ) ( ),

( , ) , ( , )

V k k k

k S k Sε

φ∆ <

∀ ∈ ∈

x

x f x
(94) 

ii)  
( ) 2

*

, ( ) ( , ) ( ),

( , ) , ( , )

V k k k k

k S k Sε

φ∇ ⋅ ≤

∀ ∈ ∈

x f x

x f x
(95) 

iii)
( )

1

1 2( ) ( ) ( ) ( ),

\
o

j k

m M
j k

s
N N

j j V k V k

k

β αφ φ
= −

=

+ ≤ −

∀ ∈Κ Κ

∑ 0 . (96) 

iv)
( )

1

1 2 0( ) ( ) ( ) ( ),
o

j k

m M
j k

s
N

j j V k V k

k

δ αφ φ
= −

=

+ ≤ −

∀ ∈Κ

∑  (97) 

v) ( ) ( ), s
M m mk V k kδ δ ξ≤ = ∀ ∈ NΚ

N

)x

V V  (98) 

Debeljković (1979.a). 
Proof. The proof is also based on contradiction. 
For a system trajectory, such that x0 ∈ Sα and assuming 

that there exists a discrete moment k1,  the 
first one for which the following condition is fullfilled x(k

1 \ s
Nk ∈Κ Κ

1, 
k0, x0) ∉ Sβ. 

Then, having in mind the relations expressed above, we 
can write 

( ) (

( ) ( )

1

0

1

0

1

1 1 0 0

1

1

, ( ) ( , ) , ( )

, ( ) , ( ) , \

j k

j k

j k
s

N N
j k

V k k V k V j j

V j j j j k

= −

=

= −

=

= + ∆

+ ∇ ⋅ ∈Κ Κ

∑

∑

fx x

x f x
 (99) 

Using the definition ( ) ( )M k⋅V , it follows that 

( ) ( )

( ) ( )

1

0

1

0

1

1 1

1

1

, ( ) ( ) , ( )

, ( ) , ( ) , \

j k

M
j k

j k
s

N N
j k

V k k V k V j j

V j j j j k

α

= −

=

= −

=

≤ + ∆

+ ∇ ⋅ ∈Κ Κ

∑

∑

fx

x f x

x
 (100) 

Using the first two conditions of the Theorem 

( ) ( )
1

0

1

1 1 1 2

1

, ( ) ( ) ( )

\

j k

M
j k

s
N N

V k k V k j j

k

α φ φ
= −

=

≤ + +

∈Κ Κ

∑x
 (101) 

Having in mind eq.(96) 

( )1 1 1, ( ) ( ), \ s
mV k k V k kβ≤ ∈Κx N NΚ

N

 (102) 

This equation can be satisfied only and only if 
. However, this result is in contradiction 

with the starting assumption, so it follows that there is no 
discrete moment k

1 0 0( , , ) ck k Sβ∉x x

1 0 0( , , ) ck k Sβ∈x x
1,  for which 

. Therefore, the only possibility is 
1 \ s

Nk¬∃ ∈Κ Κ

0 0

0

( , , ) ,

\ ,s
N N

k k S

k S
β

α

∈

∀ ∈Κ Κ ∀ ∈

x x

x
 (103) 

which guarantees that the system given by eq.(3) is practi-
cally stable. 

If we suppose that the system (3) is not practically stable 
with the settling time ks, it is bound to exist at least one dis-
crete moment k2, ∃ , for which , 2! s

Nk ∈Κ 2 0 0( , , )k k Sδ∉x x

2
s
Nk ∈Κ .  

Then 

( ) (

( ) ( )

2

0

2

0

1

2 2 0 0

1

2

, ( ) ( , ) , ( )

, ( ) , ( ) ,

j k

j k

j k
s
N

j k

V k k V k V j j

V j j j j k

= −

=

= −

=

= + ∆

+ ∇ ⋅ ∈Κ

∑

∑

fx x

x f x

)x
 (104) 

Using the definition ( ) ( )M k⋅V  and eqs.(94) and (95), 
eq.(97), finally becomes 

( )2 2 2 2 2, ( ) ( ) ( ), s
m mV k k V k V k kδ ξ< = ∈x NΚ

Κ

 (105) 

which is a contradiction in regard to the starting assumption 
and should give . This implies that, since 
the discrete moment k

2 0 0( , , ) ck k Sδ∈x x
2 is arbitrary chosen from the discrete 

time interval , then Ks
N

0 0( , , ) , s
Nk k S kδ∈ ∀ ∈Κx x  (106) 

Since 
Sδ  ⊆ Sγ, (107) 

it follows 

0 0( , , ) , s
Nk k S kγ∈ ∀ ∈x x  (108) 

which concludes the proof. ■ 
Should we include Sε = ∅, in the former Theorem, it is re-

duced to Theorem 7. 

General theorems application to the particular classes of 
discrete time systems  

We shall concentrate on the linear discrete systems ex-
pressed by eqs.(4), (5), (6), (7) and (8). 

The application of previous results, expressed in the view 
of General Theorems, needs a basic definitions’ slight pre-
formulation, as given in the sequel. 

Definition 10. System (1) is practically stable with the 
settling time ks, w.r.t. {k0, kN, α, β, γ, ||(⋅)||2}, if and only if 

2 2
0 0|| ( ) || || ||k α= <x x  (109) 

which implies 

i) ||  2( ) || ,  Nk kβ< ∀ ∈Κx (110) 
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ii) ||  2( ) || , s
Nk kγ< ∀ ∈Κx (111) 

at γ < α < β. 
Definition 11. The system given by eq.(3) is practically 

stable with the settling time ks, w.r.t. {k0, kN, α, , γ, ε, 
||(⋅)||

β

Κ

x

2}, if and only if 
2

0|| || || ( , ( )) || , Nk k kα ε< ∧ ≤ ∀ ∈Κx f x  (112) 

which implies 

i) ||  2( ) || , Nk kβ< ∀ ∈x (113) 

ii) ||  2( ) || , s
Nk kγ< ∀ ∈Κx (114) 

at γ < α < β. 
Definition 12. The system given by eq.(1), is practically 

unstable w.r.t. {k0, kN, α, β, ||(⋅)||2}, α < β, if for 
2

0|| || α<x  (115) 

there exists a discrete moment k = k* ∈ KN, so that 
* 2|| ( ) ||k β≥x  (116) 

Definition 13. The system given by eq.(3) is practically 
unstable w.r.t. {k0, kN, α, β, ε, ||(⋅)||2}, α < β,  if for 

2
0|| || || ( , ( )) || , Nk k kα ε< ∧ ≤ ∀ ∈Κx f x  (117) 

there exists a discrete moment  k = k* ∈ KN, so that 
* 2|| ( ) ||k β≥x  (118) 

Theorems which give sufficient conditions of practical 
stability will be presented, Debeljković (1979.a). 

Theorem 9. The system given by eq.(4) is practically 
stable with the settling time ks, w.r.t. {k0, kN, α, β, γ, ||(⋅)||2}, 
γ < α < β, if the following conditions are satisfied 

i) , 
0

0

1

( ) / , \
j k k

s
N N

j k

j kβ α
= + −

=

Λ ≤ ∀ ∈Κ Κ∏ (119) 

ii)  
0

0

1

( ) / ,
j k k

s
N

j k

j kγ α
= + −

=

Λ ≤ ∀ ∈Κ∏ (120) 

where Λ(j) denotes the maximum eigenvalue of the matrix 
AT(k)A(k). 

Proof. Let V k .   ( )( ) ln ( ) ( )T k k=x x
Then 

( )

( )

( ) ln ( 1) ( 1)

( ) ( ) ( ) ( )ln ( ) ( ) ln
( ) ( )

 ( ) ( )

T

T T
T

T

T

V k k k

k A k A k kk k
k k

A k A k

∆ = + +

− =

≤ Λ

x x x

x xx x
x x

 (121) 

The summation of the previous equation for 

, gives 

0

0

1k k

k

+ −

∑
K \ K s

Nk∀ ∈ N

+

Κ

Κ

γ

s

)

0

0

1

0 0

0 0

ln ( ) ( ) ln ( )

ln ( ) ( ), \

j k k
T

j k

T s
N N

k k k k j

k k k

= + −

=

+ + ≤ Λ

+ ∀ ∈Κ Κ

∑x x

x x
 (122) 

Bearing in mind that ||x0||2 < α  and the first condition of 
Theorem 9, then 

0 0ln ( ) ( ) ln , \T s
N Nk k k k kβ+ + < ∀ ∈Κx x  (123) 

which confirms the practical stability of the system given 
by eq.(4) on the discrete time interval Κ . \ s

N NΚ

To prove the last condition the summation of 

eq.(121), on the discrete time interval  is made, con-
firming that eq.(115) is still valid.  

0

0

1k k

k

+ −

∑
s
NΚ

It follows that 

0

0

0 0

1

ln ( ) ( )

( ) ln ,

T

j k k
s
N

j k

k k k k

j kα
= + −

=

+ + ≤

Λ + ∀ ∈Κ∑

x x
 (124) 

Using the second condition of the Theorem 

0 0ln ( ) ( ) ln ,T s
Nk k k k kγ+ + < ∀ ∈x x  (125) 

that was meant to be proved. ■ 
Theorem 10. The system given by eq.(5) is practically 

stable with the settling time ks, w.r.t. {k0, kN, α, β, γ, ||(⋅)||2}, 
 < α < β, if the following conditions are satisfied 

/ , \k s
N Nkβ αΛ ≤ ∀ ∈Κ Κ  (126) 

/ ,k
Nkγ αΛ ≤ ∀ ∈Κ  (127) 

where: . max( ) (T TA A A AλΛ = Λ =
Proof. The proof follows directly from the proof of the 

previous Theorem, if Λ =  ■ ( )( ) ( ) ( ) .T TA k A k A A constΛ =

Theorem 11. The system given by eq.(7) is practically 
stable with the settling time ks, w.r.t {k0, kN, α, β, γ, ||(⋅)||}, γ 
< α < β, if there exists a real, scalar function φ(k), which is 
bounded for ∀k ∈ KN-1 and if the following conditions are 
satisfied 

1|| ( , ) || ( ), , { \ }NA k k k S Sκβ κγφ −< ∀ ∈Κ ∀ ∈x x  (128) 

0

0

1

( ) / , \
j k k

s
N N

j k

j kφ β α
= + −

=

≤ ∀ ∈Κ∏ Κ  (129) 

0

0

1

( ) / ,
j k k

s
N

j k

j kβ γ
= + −

=

Λ ≤ ∀ ∈Κ∏  (130) 

Proof. Let: V k .  ( )( ) || ( ) ||k=x x
Then 

( )

( )

1

( ) ln || ( 1) || ln || ( ) ||
|| ( 1) ||               ln ln , ( )

|| ( ) ||
               ln ( ), , { \ }N

V k k k
k A k k

k
k k K S Sκβ κγφ −

∆ = + −

+
= ≤

≤ ∀ ∈ ∀ ∈

x x x
x x

x
x

 (131) 

The method of the rest of the proof is the same as the 
previous ones, so it is omitted here for the sake of brevity, 
Debeljković (1979.a). ■ 

Theorem 12. The system given by eq.(4) is practically 
stable with the settling time ks, w.r.t. {k0, kN, α, β, γ, ||(⋅)||}, 
γ < α < β, if the following conditions are satisfied 

0|| ( , ) || / ,   Nk k kβ αΦ ≤ ∀ ∈Κ  (132) 
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0|| ( , ) || / , \ s
N Nk k kγ αΦ ≤ ∀ ∈Κ Κ  (133) 

where Φ(k, k0) denotes the fundamental matrix of the sys-
tem given by eq.(4), Debeljković (1979.a). 

Proof. The solution of the system given by eq.(4) vector 
difference equation in the discrete moment k, is givent with 

0 0 0 0( , , ) ( , ) , Nk k k k k= Φ ∀ ∈Κx x x  (134) 

Then 

0 0 0 0|| ( , , ) || || ( ) || || ( , ) || || ||,

  N

k k k k k

k

= ≤ Φ ⋅

∀ ∈Κ

x x x x
 (135) 

Bearing in mind that ||x0||2 < α and taking into account 
the first condition of the Theorem 

0|| ( ) || || ( , ) ||

( / )

 N

k k k

k

α

β α α β

≤ Φ ⋅

≤ ⋅ <

∀ ∈Κ

x

,  (136) 

which proves the practical stability of the system consid-
ered on the discrete time interval KN. 

In the same way, it can be shown that the following con-
dition is also satisfied 

|| ( ) || , s
Nk kγ< ∀ ∈x Κ  (137) 

which concludes the proof. ■ 
If A in eq.(4) is a constant matrix, then condition (132) is 

changed to 

|| || / ,k
NA kβ α≤ ∀ ∈Κ

A j

)v

)

)

 (138) 

Weiss and Lee (1971), making the investigation of stabil-
ity much easier.  

If A is a square matrix of dimensions n × n, then 

( )|| || || || kkA A≤  (139) 

using the inequality sign when A is a normal matrix. This 
result may be used if necessary.  

Lemma 1. Let the system under analysis be described by 
eq.(4).  

If 

( , ) ( , ) ( )k h k h h= Φq v  (140) 

then 
1

2 2|| ( , ) || || ( ) || ( )
j k

j h

k h h j
= −

=

≤ ⋅ Λ∏q v  (141) 

where . ( ) max ( ( ) ( ))Tj A jλΛ =
Proof. If the first difference of eq.(140) with respect to k 

is found, we get 
( 1, ) ( 1, ) (k h k h h+ = Φ +q  (142) 

Since 

( 1, ) ( ) ( ,k h A k k hΦ + = ⋅Φ  (143) 

then, taking into account eq.(140) 

( 1, ) ( ) ( ,k h A k k h+ = ⋅q q  (144) 

Resolving the expression ∆ , we get  ln ( , ) ( , )T k h k hq q

( )

ln ( , ) ( , ) ln ( 1, ) ( 1, )
ln ( , ) ( , )

( , ) ( ) ( ) ( , )ln
( , ) ( , )

ln ( ) ( )

T T

T

T T

T

T

k h k h k h k h
k h k h
k h A k A k k h

k h k h

A k A k

∆ = + +

−

=

≤ Λ

q q q q
q q
q q

q q
 (145) 

Making a summation of the previous equation, tak-

ing into account that 

1j k

j h

= −

=
∑

( , ) ( , ) ( ) ( )T Th h h h h h=q q v v  (146) 

because 

( , ) , ( , ) ( )h h I h h hΦ = =q v  (147) 

it follows that 
1 1

ln ( , ) ( , ) ln ( )
j k j k

T

j h j h

j h j h j
= − = −

= =

∆ ≤∑ q q Λ∑  (148) 

So 

1

ln ( , ) ( , ) ln ( , ) ( , )

ln ( )

T T

j k

j h

k h k h h h h h

j
= −

=

− ≤

≤ Λ∑

q q q q
 (149) 

or 
1( , ) ( , )ln ln ( )

( ) ( )

T j

T
j k

k h k h j
h h

= −

=

≤ Λ∏q q
q q

k

 (150) 

which finally gives 
1

2 2|| ( , ) || || ( ) || ( )
j k

j h

k h h j
= −

=

≤ ⋅ Λ∏q v  (151) 

that was meant to be proved. ■ 
If the matrix A(k) = A, then Λ(j) = Λ = const., so eq.(151) 

is transformed to 
0.5( )|| ( , ) || || ( ) || k hk h h −≤ Λq v  (152) 

and can be used when the time invariant system, given by 
eq.(5) is considered, Debeljković (1997.a). 

The derived results represent a discrete version of the 
very well known Bellman-Gronwall’s lemma, Angelo 
(1974).    

Theorem 13. The system given by eq.(8) is practically 
stable with the settling time ks, w.r.t. {k0, kN, α, β, γ, ε, 
||(⋅)||}, γ < α < β, if the following conditions are satisfied 

i) 0.5 * 0.5( 1) / , \k k
Nk kε β α−Λ + ⋅ Λ ≤ ∀ ∈Κ Κ s

N  (153) 

ii) 0.5 * 0.5( 1) / ,k k
Nk kε γ α−Λ + ⋅ Λ ≤ ∀ ∈Κ s  (154) 

where * / α=ε ε  and . max ( )TA AλΛ =
Proof. The solution of eq.(8) is given with 

1

0
0

( ) ( ,0) ( 1, ) ( ),
j k

j

N

k k k j

k

= −

=

= Φ + Φ −

∀ ∈Κ

∑x x jf
 (155) 

or 
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0

1

0

|| ( ) || || ( ,0) || || ||

|| ( 1, ) || || ( ) ||,
j k

N
j

k k

k j j k
= −

=

≤ Φ ⋅ +

+ Φ − ⋅ ∀ ∈Κ∑

x x

f
 (156) 

Using the basic result of Lemma 1. 
1

0.5 0.5( 1)
0

0
|| ( ) || || || || ( ) || ,

\

j k
k k

j

s
N N

k j

k

= −
−

=

≤ Λ + Λ

∀ ∈Κ Κ

∑x x f
 (157) 

Since 

0|| || || ( ) || , Nk kα ε< ∧ ≤ ∀ ∈x f Κ  (158) 

then 
0.5 0.5( 1)|| ( ) || ,

\

k k

s
N N

k k
k

α ε −≤ Λ + ⋅ Λ

∀ ∈Κ Κ

x
 (159) 

or, using the first condition of the Theorem , we get 

|| ( ) || , \ s
N Nk kβ< ∀ ∈Κx Κ

N

 (160) 

so that the practical stability on the discrete time interval 
 is confirmed. K \ K s

N

Using the analogous procedure, starting with eq.(157) 
for the discrete time interval , we get s

NΚ

|| ( ) || , s
Nk kγ< ∀ ∈x Κ

Κ

)j

 (161) 

which concludes the proof of the Theorem. ■ 
Bearing in mind the fact that all the theorems give only 

the sufficient conditions of practical and finite time stabil-
ity, some better estimations of the systems behavior may be 
gained if potential time intervals of practical unstability are 
determined.   

Then we can estimate from the “right side”. The results, 
according to Definitions 12-13, are presented in the sequel. 

Theorem 14. The system given by eq.(4) is practically 
unstable w.r.t. {k0, kN, α, β, ||(⋅)||2}, α < β, if there exists a 
real, positive number δ, δ ∈ ] 0, α [and the discrete moment 
k, k = k*: ∃(k* > k0)∈KN  and if the following condition is 
satisfied 

*
0

0

1
*

min ( ) / ,
j k k

N
j k

j kλ β δ
= + −

=

> ∈∏  (162) 

where , Debeljković (1979.a). (min ( ) min ( ) ( )Tj A j Aλ λ=

Proof. Let V k .   ( )( ) ln ( ) ( )T k k=x x x
Then 

( )

( )min

( ) ( ) ( ) ( )( ) ln
( ) ( )

ln ( ) ( )

T T

T

T

k A k A k kV k
k k

A k A kλ

∆ =

≥

x xx
x x

≥

k

α

Κ

 (163) 

The summation of the previous inequality for 

any k, k ∈K

0

0

1j k k

j k

= + −

=
∑

N, gives 

0

0

0 0

1

min 0 0

ln ( ) ( )

ln ( ) ln ( ) ( )

T

j k k
T

j k

k k k k

j kλ
= + −

=

+ + ≥

+∑

x x

x x
 (164) 

Taking into account that for some x0 the condition 
 is fullfilled and combining the previous 

equation with eq.(162) 

2
0|| ||δ < <x

*
0

* *
0 0

( )

ln ( ) ( ) ln
N

T

k k

k k k k β

∃ > ∈Κ ∋

+ + >x x
 (165) 

which concludes the proof of the Theorem. ■ 
Theorem 15. The system given by eq.(5) is practically 

unstable w.r.t. {k0, kN, α, β, ||(⋅)||}, α < β, if there exists a 
real, positive number δ, δ ∈ ] 0, α [ and the discrete mo-
ment k, k = k*: ∃(k* > k0)∈KN  and if the following condi-
tion is fullfilled 

* *
min / ,k

Nkλ β δ> ∈  (166) 

where . min min ( )TA Aλ λ=
Proof. As in the previous Theorem, if 

min min( ) ( ) const.Tj A Aλ λ= = ■ 
When the forced discrete time systems are considered in 

the sense of practical unstability, it is convinient to use the 
following result.  

Lemma 2. Let us consider, again, the system given by 
eq(4).  

If 
( , ) ( , ) ( )k h k h h= Φq v  (167) 

then 
1

2 2
min|| ( , ) || || ( ) || ( )

j k

j h

k h h jλ
= −

=

≥ ⋅∏q v  (168) 

where , Debeljković (1979.a). min min ( )TA Aλ λ=
Proof. The proof is analogous to the proof of Lemma 1 

and is based on the very well known relation from the quad-
ratic forms theory. ■ 

In a particular case, when A(k) = A, then 
0.5( )
min|| ( , ) || || ( ) || k hk h h λ −≥q v  (169) 

After this, the next results can be given. 
Theorem 16. The system given by eq.(3) is practically 

unstable w.r.t. {k0, kN, α, β, ||(⋅)||}, α < β, if there exist real, 
positive numbers δ  and ε 0, such that δ < ||x0||2 < α  and ε 0 
< ||f(k)|| < ε, ∀k ∈KN  and the discrete moment k, k=k*: 
∃!(k*>k0)∈KN  for which the following condition is full-
filled 

* *0.5 * 0.5( 1) *
min min ,k k

Nk kδ λ ε λ β−− ⋅ > ∈Κ  (170) 

Proof. The solution of eq.(3) is given with 
1

0
0

( ,0) ( ) ( 1, ) ( ),
j k

j

N

k k k j

k

= −

=

Φ = − Φ − ⋅

∀ ∈Κ

∑x x f j

j

 (171) 

Using the well known properties of the utilized norm, we 
get  

0
1

0

|| ( ,0) ||

|| ( ) ( 1, ) ( ) ||,
j k

j

N

k

k k j

k

= −

=

Φ ≤

≤ − Φ − ⋅

∀ ∈Κ

∑

x

x f  (172) 
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or  

0

1

0

|| ( ,0) || || ( ) ||

|| ( 1, ) ( ) ||,
j k

N
j

k k

k j j k
= −

=

Φ ≤ +

Φ − ⋅ ∀ ∈Κ∑

x x

f
 (173) 

If we proceed further 

0

1

0

|| ( ) || || ( ,0) ||

|| ( 1, ) ( ) ||,
j k

N
j

k k

k j j k
= −

=

≥ Φ −

Φ − ⋅ ∀ ∈Κ∑

x x

f
 (174) 

Using the same procedure, starting from eq.(170) 
1

0

0

|| ( ) || || ( 1, ) ( ) ||

|| ( ,0) ||,

j k

j

N

k k j

k k

= −

=

≥ Φ − ⋅

− Φ ∀ ∈Κ

∑x f

x

j −
 (175) 

eqs.(173) and (175) can be combined in the following 
way 

0

1

0

|| ( ) || || ( ,0) ||

|| ( 1, ) ( ) || ,
j k

N
j

k k

k j j k
= −

=

≥ Φ −

− Φ − ⋅ ∀ ∈Κ∑

x x

f
 (176) 

Using the basic result of Lemma 2, we get 
0.5 0.5( 1)

0 min min|| ( ) || || || || ( ) || ,k k

N

k k j

k

λ λ −≥ ⋅ −

∀ ∈Κ

x x f
 (177) 

Taking into account that for some x0 the condition 
 is fullfilled, for a f(k), ε2

0|| ||δ < <x α 0 < ||f(k)|| < ε, and 
for a discrete moment k = k* ∈KN. It follows that 

** 0.5 * 0.5( 1) *
min 0 min|| ( ) || ,k k

Nk kδ λ ε λ −≥ − ∈x k Κ  (178) 

Using this theorem condition we finally get 
* *|| ( ) || , Nk kβ> ∈x Κ

α

Κ

 (179) 

which was meant to be proved. ■ 
The recent results of the author, concerning the same 

problems are presented in the end, Debeljković (1993). 
Theorem 17. The time invariant, autonomous system 

given by eq.(1) is practically stable w.r.t. {k0, kN, , β, 
||(⋅)||2}, α < β, if there exists a real, symmetric, positive 
definite matrix M=MT > 0, which satisfies the following 
condition 

( ) ( )( ) ( ) ( ) ( ),
( )

T Tk Q k k M k
k Sβ

<

∀ ∈

x x x x
x

ψ ψ
 (180) 

and if the next condition is fullfiled as well 

/ ,k
Nkνη β α< ∀ ∈  (181) 

where ν and η are given by 

min min

( ) ( ),
( ) ( )
Q M
Q

ν η
λ λ
Λ Λ

= =
Q

 (182) 

and the matrix Q = QT > 0, is also a real, symmetric, posi-
tive definite matrix. 

Proof. Let V k .  ( )( ) ln ( ) ( )T k Q k=x x x
Then 

( ) ( ) ( )( ) ( )
( ) ln

( ) ( )

T

T

k Q k
V k

k Q k
∆ =

x x
x

x x
ψ ψ

 (183) 

Should we use the well known nature of the positive 
definite quadratic forms 

2 2
min ( ) || ( ) || || ( ) || ( ) || ( ) ||HH k k H kλ ≤ ≤ Λx x x 2  (184) 

it is easy to see that 

( )
2

2
minmin

( ) || ( ) || ( )( ) ln
( )( ) || ( ) ||

M k MV k
QQ k λλ

Λ Λ
∆ ≤ <

⋅
xx
x

 (185) 

The summation of the previous inquality, makes 
0

0

1j k k

j k

= + −

=
∑

00

0 0

0 0 0

11

ln ( )  ( ) ln ( )  ( )

    ln ln ln

T T

j k kj k k
k

j k j k

k k Q k k k Q k

η η η
= + −= + −

= =

+ + −

≤ ≤ ≤∑ ∏

x x x x 0 ≤

0 ||x

Κ

 (186) 

or 
2

0 0ln ( ) ( ) ln ln ( ) ||

ln ln ( )
ln ( )

T k

k

k

k k Q k k Q

Q
Q

η

η α

αη

+ + ≤ + Λ

≤ + Λ

≤ Λ

x x

 (187) 

If the expression on the left side of the previous equation 
is replaced by the corresponding term from eq.(184) and 
then eq.(182) is used 

2|| ( ) || kk ανη≤x  (188) 

in other words, if eq.(181) is used we get 
2 2

0|| ( ) || || ( ) || , Nk k k kβ+ = < ∀ ∈Κx x  (189) 

which concludes the proof. ■ 
Theorem 18. The system given by eq.(7), is practically 

stable w.r.t. {k0, kN, α, β, ||(⋅)||2}, α < β, if there exists a 
real, positive number θ  such that 

( )sup ( ) ( )T

S
A A

β

θ
∈

= Λ
x

x x  (190) 

and if the following condition is satisfied 

/ ,k
Nkθ β α< ∀ ∈  (191) 

Proof. Let V k . The rest of the proof 
is completely metodologically identical to the previous one 
and omitted here for the sake of brevity. ■ 

( ) 2( ) ln || ( ) ||Ik=x x

Conclusion 
This layout of the results of numerous authors who have 

been working on the problems of nonlyapunov stability 
over the last fifty years deals primarily with the concept of 
finite time stability, practical stability and technical stabil-
ity. The presented results are treating only a particular class 
of discrete time systems and are given only in the form of 
sufficient conditions. 

Some of these results are extracts from author’s doctoral 
dissertation. 

References 
[1] HURT,J. Some Stability of Motion on Finite-Time Interval. SIAM J. 

Num. Anal., 1967, vol.4, no.4, pp.583–596. 
[2] MICHEL,A.N, WU, S.H. Stability of Discrete Systems over a Finite 

Interval of Time. Int. J. Control, 1969, vol.9, no.6, pp.679–693. 



 D.LJ.DEBELJKOVIĆ: FINITE TIME STABILITY OF LINEAR DISCRETE SYSTEMS: RETROSPECTIVE OF RESULTS 63 

[3] HEINEN,J,A. Quantitative Stability of Discrete Systems. Michigan 
Math. Journal, 1970, no.17, pp.211–215. 

[4] WEISS,L. Controllability, Realization and Stability of Discrete-Time 
Systems. SIAM J. Control, 1972, vol.10, no.2, pp.230–251. 

[5] WEISS,L, LAM,L. Stability of Non-Linear Discrete-Time Systems. 
Int. J. Control, 1973, vol.17, no.3, pp.465–470. 

[6] WEISS,L, LEE,J.S. Finite Time Stability of Linear Discrete-Time 
Systems. Avt. Telem., 1971, no.12, pp.63–68. 

[7] LAM,L, WEISS,L. Finite Time Stability with Respect to Time Vary-
ing Sets. J. Franklin Inst., 1974, vol.9, pp.415–421. 

[8] SHANHOLT,G. Set Stability for Difference Equations. Int. J. Con-
trol, 1974, vol.10, no.2, pp.309–314. 

[9] GRIPPO,L, LAMPARIELLO,F. Practical Stability of Discrete-Time 
Systems. J. Franklin Inst., 1976, vol.302, no.3, pp.213–224. 

[10] GRIPPO,L, LAMPARIELLO,F. Practical Stability of Large-Scale 
Discrete-Time Systems. Int. J. Syst. Sci., 1978, vol.9, no.11, 
pp.1235–1246. 

[11] DEBELJKOVIĆ,D,LJ. Synthesis of Discrete Automatic Control on 
Finite Time Interval (in Serbian). Ph.D. Thesis, Mechanical Eng. 
Dept., University of Belgrade, Belgrade, July, 1979.a. 

[12] DEBELJKOVIĆ,D,LJ. Praktična stabilnost s vremenom smirenja vre-
menski diskretnih sistema. Tehnika, 1979.b, no.10, pp.19–23. 

[13] DEBELJKOVIĆ,D,LJ. Praktična stabilnost s vremenom smirenja 
vremenski diskretnih sistema u slobodnom i prinudnom radnom 
režimu. Tehnika, 1980.a, no.1, pp.13–20. 

[14] DEBELJKOVIĆ,D,LJ. Prilog proučavanju praktične nestabilnosti 
vremenski diskretnih sistema. Tehnika, 1980.b, no.2, pp.7–11. 

[15] DEBELJKOVIĆ,D,LJ. Further Results in Finite Time Stability. Proc. 
MELECON 83, Athens, 1983, pp.475–478. 

[16] DEBELJKOVIĆ,D,LJ. Praktična stabilnost jedne klase vremenski dis-
kretnih sistema. Saopštenja Mašinskog fakulteta, 1993, no.1, pp.37–42. 

[17] BAJIĆ,V. On Practical Stability of Discrete Homogenous Bilinear 
Systems. Tehnika, 1983, vol.32, no.1, pp.131–132. 

[18] ANGELO,H. Time Varying Systems. Allyn and Bacon, Boston, 1974. 

Received: 14.07.2001

Stabilnost linearnih diskretnih sistema na konačnom vremenskom 
intervalu: retrospektiva rezultata 

U radu je dat iscrpan, hronološki pregled rezultata koji se bave problematikom stabilnosti ove klase sistema na ko-
načnom vremenskom intervalu. Navedene su brojne definicije, a kroz selektivno odabrane teoreme izloženi su najno-
viji ranije publikovani i danas aktuelni rezultati, koji specificiraju uslove stabilnosti i nestabilnosti linearnih, diskret-
nih sistema koji svoje ponašanje ostvaruju ili u slobodnom ili u prinudnom radnom režimu. Velika većina rezultata 
data je u formi dovoljnih uslova ovog koncepta stabilnosti. 

Ključne reči: diskretni sistemi, stabilnost na konačnom vremenskom intervalu, praktična stabilnost, Bellman-Gro-
nwallova lema. 

Stabilité des systèmes linéaires discrèts dans ľintervalle de temps fini: 
retrospective des résultats 

Ľetude détaillée et chronologique des résultats concernant le problème de la stabilité de cette classe de systèmes dans 
ľintervalle de temps fini est donnée. Les définitions nombreuses sont présentées aussi bien que les théorèmes choisis et 
les résultats auparavant publiés mais toujour actuels sur les conditions de la stabilité et de la non-stabilité des systè-
mes linéaires et discrets dans le régime du travail libre ou imposé. La plupart des résultats est donnée en forme des 
conditions suffisantes de cette conception de la stabilité. 

Mots-clés: systèmes discrets, stabilité dans ľintervalle de temps fini, stabilité pratique, lemma de Bellman-Gronwall. 
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