UDK: 533.6.07(047)=861 COSATI: 20-04, 14-02

Prikaz proračuna šestokomponentne aerovage za ispitivanje vitkih modela u aerotunelu

Dragan Marinkovski, dipl.inž.¹⁾

Prikazan je proračun unutrašnje šestokomponentne monoblok aerovage. Potreba iterativnog postupka proračuna, uzrokovala je razvijanje odgovarajućih računarskih programa. Pomoću geometrije aerovage i spoljašnjeg opterećenja izračunavaju se signali sa mernih mostova aerovage i naponi u karakterističnim presecima aerovage. Program je omogućio promenu geometrijskih veličina aerovage i spoljašnjeg opterećenja. Suština projektovanja aerovage je da pri prelaznim opterećenjima maksimalni naponi u najopterećenijim presecima dostignu vrednost trajne dinamičke čvrstoće, a da pri stacionarnom merenju nivo signala bude zadovoljavajući.

Ključne reči: Eksperimentalna aerodinamika, aerovaga, aerotunel.

Korišćene oznake i simboli

		KUI ISCENE UZITAKE I SIIIDUII
RX	-	aksijalna sila, N
RY	-	bočna sila, N
RZ	-	normalna sila, N
DL	-	moment valjanja, Nm
DM	-	moment propinjanja, Nm
DN	-	moment skretanja, Nm
F	-	sila, N
M	-	moment savijanja, Nm
l	-	dužina, m
A	-	površina, m ²
Ι	-	moment inercije, m ⁴
Κ	-	polarni moment inercije, m ⁴
W	-	otporni moment, m ³
σ	-	normalni napon, N/m ²
$\sigma_{\scriptscriptstyle 02}$	-	napon na granici razvlačenja, N/m ²
$\sigma_{\scriptscriptstyle D}$	-	trajna dinamička čvrstoća, N/m ²
Ε	-	modul elastičnosti, N/m ²
G	-	modul klizanja, N/m ²
ε	-	dilatacija
V	-	stepen sigurnosti
k_t	-	koeficijent osetljivosti mernih traka
е	-	izlazni signal sa mernog mosta, V
U	-	napon napajanja mernih mostova, V
n_2	-	broj spoljašnjih lamela, u jednoj grupi,
		mernog elementa za aksijalnu silu
		Indeksi
x	-	aksijalna sila
У	-	bočna sila
Ζ	-	normalna sila
l	-	moment valjanja; lamela
т	-	moment propinjanja, merna konzola
п	-	moment skretanja
С	-	centralna lamela

ce i simboli

uk - ukupna vrednost

max - maksimalna vrednost

U v o d

UUTRAŠNJA šestokomponentna monoblok aerovaga VTI50E omogućava ispitivanje modela raketa u aerotunelu T-38 [1]. Uslovi, koji se za projektovanje aerovage moraju ispuniti, su:

- deformacije mernih elemenata aerovage od primarne komponente, treba da budu znatno veće od deformacija izazvanih dejstvom sekundarnih komponenata,
- potrebno je koristiti mehaničku simetriju radi smanjenja medjuuticaja,
- mora da se obezbedi simetrija mernih mostova, odnosno položaja mernih traka,
- aerovaga mora da izdrži opterećenja nastala kod zapuštanja, odnosno zaustavljanja aerotunela na Mahovim brojevima M>2.
- mora da se obezbedi dovoljno jak signal sa mernih mostova pri stacionarnim uslovima.

Vitki modeli, kao što su modeli raketa, zahtevaju da aerovaga ima isti merni opseg u uzdužnoj i poprečnoj ravni, a obrada signala aerovage zahteva približno isti nivo signala za sve komponente.

Na osnovu ova dva preuzeta zahteva i usvojenih dimenzija modela rakete, dužine 1000 mm i prečnika 100 mm, definisana je nosivost aerovage u režimu stacionarnog rada aerotunela (RSR) i u režimu prelaznih opterećenja RPO[2], što je prikazano u tabeli 1.

Tabela	1
	-

	RX	RY	RZ	DL	DM	DN
	(N)	(N)	(N)	(Nm)	(Nm)	(Nm)
RSR	1000	3000	3000	20	550	550
RPO	1500	8000	8000	100	1200	1200

¹⁾ Vojnotehnički institut VJ, 11000 Beograd, Katanićeva 15

spoljašnja lamela

merna traka

S

t

Izometrijski prikaz aerovage i njena veza sa modelom (stingom) prikazani su na sl.1.

Slika 1. Veza aerovage sa modelom (stingom)

Aerovaga sadrži sledeće merne elemente:

- prednji merni element, izveden u formi kaveza sa pet lamela, na koji je postavljen pun merni most za merenje komponente *DL* i polovina mernih mostova za merenje komponenti *RY,RZ, DN, DM*.
- zadnji merni element, izveden u formi kaveza sa pet lamela, na koji je postavljena druga polovina mernih mostova za merenje komponenti RY, RZ, DN, DM.
- centralni merni element izveden u formi paralelograma sa dve grupe spoljašnjih lamela i dve merne lamele smeštene u centru paralelograma. Spoljašnje lamele se odlikuju velikom krutošću u svim pravcima, osim u pravcu delovanja aksijalne sile *RX*, gde je potrebna krutost ostvarena dimenzionisanjem mernih lamela. Na mernim lamelama postavljen je merni most za merenje komponente *RX*. Reperna tačka (RT) aerovage se nalazi u centru ovog mernog elementa.

Skica aerovage kao i položaj mernih traka su prikazani na sl.2.

Aerovaga u sebi objedinjava tri tipa pretvarača.

- Pretvarač spoljašnjeg opterećenja, koje deluje na model, u dilataciju mernih elemenata. Projektom aerovage treba da se obezbedi njena visoka krutost i dovoljno visok nivo dilatacija na mestu lepljenja mernih traka, zavisno isključivo od komponente koja deluje na odgovarajući merni element.
- Pretvarač dilatacije u promenu električnog otpora koji se realizuje lepljenjem mernih traka na lamele mernih elemenata. Za izradu mernih mostova predvidjena je

upotreba mernih traka i pribora firme *MicroMeasurement*. Izabrane su merne trake serije TK, otpornosti 350 Ω . Merne trake su folijskog tipa, izradjene od legure Ni, Cu, Fe i Al čiji je koeficijent $k_i=2$.

– Pretvarač promene električnog otpora mernih traka u električni signal što se postiže povezivanjem mernih traka u merni most. Za formiranje mernog mosta za komponente RY, RZ, DN, DM i DL u svakoj grani mosta postavlja se po jedna merna traka, dok se za merni most za komponentu RX u svakoj grani mosta postavljaju po dve merne trake.

Način povezivanja mernih traka u merne mostove prikazan je na sl.3.

Komponente *RY* i *DN*, odnosno *RZ* i *DM* razdvajaju se električnim putem, a komponente *DL* odnosno *RX* razdvajaju se mahanički [3].

Materijal aerovage je visokokvalitetni čelik ARMCO PH13.8-Mo, koji se odlikuje visokim mehaničkim svojstvima, dobrom obradljivošću i visokom otpornošću na koroziju. Osnovne mehaničke osobine ovog čelika prikazane su u tabeli 2.

Tabela	2.
1 abcia	

$E (N/m^2)$	$G(N/m^2)$	σ_{02} (N/m ²)	$\sigma_D (N/m^2)$
$2 \cdot 10^{11}$	$8 \cdot 10^{10}$	1.313·10 ⁹	7.10 ⁸

Odredjivanje nivoa signala sa mernih mostova za komponente *RX*, *RY*, *RZ*, *DL*, *DN*, *DM*

Kako nivo izlaznog signala sa mernog mosta direktno zavisi od vrednosti napona napajanja mernog mosta, to je u interesu da se koristi maksimalno dozvoljena vrednost napona napajanja koja za izabrane merne trake iznosi 20V. Više vrednosti napona napajanja limitirane su dozvoljenim zagrevanjem mernih traka.

U tabeli 3 su date konačne dimenzije aerovage dobijene posle 10 iteracija.

Tabela 3.		
<i>a</i> = 0.0150	$d_s = 0.0500$	$d_2 = 0.0060$
<i>b</i> = 0.0050	r = 0.2135	$l_s = 0.0060$
<i>c</i> = 0.0300	$R_m = 0.0010$	$l_{sl} = 0.2560$
$l_r = 0.3520$	$R_s = 0.0010$	$l_{s2} = 0.0020$
$l_2 = 0.0100$	$l_k = 0.0600$	$l_{s3} = 0.0160$
l = 0.0120	$d_{kv} = 0.0366$	$l_c = 0.0280$
$l_l = 0.0200$	$a_1 = 0.0050$	$l_3 = 0.0090$
$l_0 = 0.0050$	$a_2 = 0.0080$	$l_4 = 0.0180$
$l_1 = 0.1500$	$b_1 = 0.0036$	$R_v = 0.0030$
$l_u = 0.2880$	$c_s = 0.0460$	$l_{01} = 0.0040$
$d_u = 0.0060$	$d_1 = 0.0005$	$d_{km} = 0.0335$

Odredjivanje nivoa signala sa mernih mostova za RY, RZ, DN, DM

Karakteristike poprečnog preseka prednjeg, odnosno zadnjeg mernog elementa su:

$$A = 4 \cdot a \cdot b + c \cdot d \tag{1}$$

$$I_{z,y} = \frac{c^4}{12} + 2\left(\frac{a \cdot b^3}{12} + a \cdot b \cdot r^2 + \frac{b \cdot a^3}{12}\right)$$
(2)

$$W_{z,y} = \frac{I_{z,y}}{r + \frac{b}{2}} \tag{3}$$

Slika 2. Unutrašnja šestokomponentna aerovaga

Normalni naponi i dilatacije na mestima lepljenja mernih traka su:

$$\sigma_{z,y} = \frac{M_{z,y}}{W_{z,y}} \tag{6}$$

$$\sigma_{m,n} = \frac{M_{m,n}}{W_{z,y}} \tag{7}$$

$$\varepsilon_{z,y} = \frac{\sigma_{z,y}}{E} \tag{8}$$

$$\varepsilon_{m,n} = \frac{\sigma_{m,n}}{E} \tag{9}$$

Vrednosti napred navedenih veličina date su u tabeli 4. Nominalne vrednosti izlaznih signala su:

$$e_{z,y} = k_t \cdot U \cdot \varepsilon_{z,y} = 15.45 \cdot 10^{-5} \,\mathrm{V} \tag{10}$$

$$e_{n,m} = k_t \cdot U \cdot \varepsilon_{n,m} = 18.88 \cdot 10^{-3} \,\mathrm{V} \tag{11}$$

Tabela	a 4.							
	$I_{z,y}$	$W_{z,y}$	$M_{z,y}$	$M_{n,m}$	$\sigma_{z,y}$	$\sigma_{n,m}$	$\mathcal{E}_{z,y}$	$\mathcal{E}_{n,m}$
	[m ⁴]	[m ³]	[Nm]	[Nm]	[N/m ²]	$[N/m^2]$		
RSR	1.389.10-7	5.825.10-6	450	550	$7.725 \cdot 10^7$	9.442·10 ⁷	3.86.10-4	4.7·10 ⁻⁴
RPO	1.389.10-7	5.825.10-6	1200	1200	20.60.107	20.60·10 ⁷	10.10-4	10.10-4

(5)

$$RY$$

$$I5$$

$$U^{\circ}$$

$$RZ$$

$$V$$

$$Z0$$

$$RL$$

$$Z0$$

$$I9$$

$$U^{\circ}$$

$$U^{\circ}$$

$$Z1$$

$$Z2$$

$$Z2$$

$$Z2$$

$$Z2$$

Slika 3. Merni mostovi

Momenti savijanja na mestima lepljenja mernih traka su:

$$M_{z,y} = RZ \cdot l_1 \tag{4}$$

T

$$M_{m,n} = DM$$

Maksimalna deformacija na mestima lepljenja mernih traka pri jednosmernom delovanju komponenti *RY* i *DM*, odnosno *DN* i *DM*, u režimu prelaznih opterećenja, iznosi:

$$\varepsilon_{\max} = \varepsilon_{z,y\max} + \varepsilon_{n,m\max} = 20 \cdot 10^{-4}$$
(12)

Na ovaj način izračunata dilatacija treba da je manja ili jednaka dozvoljenoj dinamičkoj dilataciji mernih traka koja po podacima iz kataloga proizvodjača iznosi $\pm 20 \cdot 10^{-4}$ za 10^7 ciklusa. Maksimalna dilatacija izračunata je uz pretpostavku, da se pri prelaznim opterećenjima sila i moment menjaju u fazi, odnosno da istovremeno dostižu i maksimalne i minimalne vrednosti, što je najnepovoljniji slučaj. S obzirom da prelazno opterećenje pri uspostavljanju vazdušne struje traje 1s, a da pri zaustavljanju aerotunela traje 5s i da je učestalost oscilovanja u toku ovih pojava 12Hz, dobija se broj rafala aerotunela n_{raf} za 10^7 ciklusa:

$$n_{raf} = \frac{10^7}{\left(t_{st} + t_z\right)f} = 140000 \tag{13}$$

Na osnovu ovog razmatranja se zaključuje, da opterećenje aerovage nije limitirano veličinom deformacija ispod mernih traka.

Odredjivanje signala sa mernog mosta za komponentu DL

Registrovanjem dilatacije od savijanja mernih lamela, moment valjanja *DL* se posredno meri na prednjem mernom elementu aerovage. Savijanje mernih lamela je prouzrokovano uvijanjem celog mernog elementa (kavez sa pet lamela).

Moment inercije merne lamele je:

$$I_l = \frac{b \cdot a^3}{12} = 1.406 \cdot 10^{-9} \,\mathrm{m}^4 \tag{14}$$

Polarni moment inercije merne lamele je:

$$K_{l} = \frac{a \cdot b^{3}}{16} \left[\frac{16}{3} - 3.36 \frac{b}{a} \left(1 - \frac{b^{4}}{12 \cdot a^{4}} \right) \right] = 4.939 \cdot 10^{-10} \,\mathrm{m}^{4} \quad (15)$$

Polarni moment inercije centralnog elementa je:

$$K_c = \frac{2.25 \cdot c^4}{16} \, 1.141 \cdot 10^{-7} \, \mathrm{m}^4 \tag{16}$$

Odnos momenta uvijanja i savijanja mernih lamela je:

$$\lambda_l = \frac{1}{12} \frac{G}{E} \frac{K_l}{I_l} \left(\frac{l+l_l}{r} \right) = 0.0263$$
(17)

Odnos momenta uvijanja centralne lamele i savijanja mernih lamela je:

$$\lambda_{c} = \frac{1}{24} \frac{G}{E} \frac{K_{c}}{I_{l}} \left(\frac{l+l_{l}}{r} \right) = 3.0377$$
(18)

Moment savijanja mernih lamela, prouzrokovan delovanjem momenta valjanja L je:

$$L_l = \frac{DL}{2(1+\lambda_l) + \lambda_c} = 3.929 \text{ Nm}$$
(19)

Sila koja deluje na mernu lamelu, odgovarajući moment savijanja i napon u korenu merne lamele su:

$$F_l = \frac{L_l}{2 \cdot r} = 92 \text{ N}$$
(20)

187

$$M_l = \frac{F_l}{2} (l + l_l) = 1.472 \text{ Nm}$$
(21)

$$\sigma_l = \frac{M_l}{I_l} \frac{a}{2} = 7.853 \cdot 10^6 \,\mathrm{N/m^2}$$
(22)

Napon na mestu lepljenja mernih traka i odgovarajuća dilatacija su:

$$\sigma_{lt} = \frac{l + l_l - 2 \cdot l_0}{l + l_l} \sigma_l = 5.399 \cdot 10^6 \,\mathrm{N/m^2}$$
(23)

$$\varepsilon_l = \frac{\sigma_{lt}}{E} = 2.699 \cdot 10^{-5} \tag{24}$$

Nominalna vrednost izlaznog signala sa mernog mosta je:

$$e_l = k_t \cdot U \cdot \varepsilon_l = 1.1 \cdot 10^{-3} \,\mathrm{V} \tag{25}$$

U preliminarnom proračunu razmatrana su još dva tipa prednjeg i zadnjeg mernog elementa: prvi, sa centralnom lamelom i dve bočne lamele, a drugi samo sa centralnom lamelom.Cilj je dobijanje što jačeg signala za komponentu *DL*. Ako dimenzije vage to dozvoljavaju, treba koristiti merni element sa jednom centralnom i četiri spoljne lamele jer on omogućava veoma precizno podešavanje osetljivih mernih mostova komponenti koje se nalaze u upravnim ravnima kao i precizno merenje momenta valjanja.

Određivanje signala sa mernog mosta za komponentu RX Karakteristike preseka merne konzole su:

$$I_m = \frac{a_1 \cdot b_1^3}{12} = 1.449 \cdot 10^{-11} \text{m}^4$$
 (26)

$$W_m = \frac{a_1 \cdot b_1^2}{6} = 1.08 \cdot 10^{-8} \text{ m}^3$$
 (27)

Karakteristika preseka spoljašnje lamele je:

$$I_s = \frac{a_2 \cdot b_2^3}{12} = 5.333 \cdot 10^{-12} \,\mathrm{m}^4 \tag{28}$$

Karakteristike preseka poluge koja spaja dve merne konzole su:

$$A_{\nu} = a_1 \cdot d_1 = 2.5 \cdot 10^{-6} \,\mathrm{m}^2 \tag{29}$$

$$A_p = a_1 \cdot d_2 = 3.0 \cdot 10^{-5} \,\mathrm{m}^2 \tag{30}$$

$$l_v = 2 \cdot R_v = 0.6 \cdot 10^{-2} \,\mathrm{m} \tag{31}$$

Sila koja deluje na mernu konzolu (sl.3) je:

$$X_{m} = \frac{RX}{2\left[16 \cdot n_{2}\left(\frac{l_{3}}{l_{4}}\right)^{3} \frac{I_{l}}{I_{m}} + 24 \cdot n_{2} \frac{I_{l}}{l_{4}^{3}} \left(2 \frac{l_{v}}{A_{v}} + \frac{l_{s}}{A_{p}}\right) + 1\right]} = (32)$$
$$= 137.6 \text{ N}$$

Sila koja deluje na spoljašnju lamelu (sl.3) je:

$$X_s = \frac{RX - 2 \cdot X_m}{4 \cdot n_2} = 45.3 \text{ N}$$
(33)

Moment savijanja i napon u korenu merne konzole su:

$$M_m = X_m \cdot l_3 = 1.238 \text{ Nm}$$
(34)

$$\sigma_m = \frac{M_m}{W_m} = 1.1467 \cdot 10^8 \text{ N/m}^2 \tag{35}$$

Napon na mestu lepljenja mernih traka i odgovarajuća dilatacija su:

$$\sigma_{mt} = \frac{l_3 - l_{01}}{l_3} \sigma_m = 6.37 \cdot 10^7 \,\mathrm{N/m^2} \tag{36}$$

$$\varepsilon_x = \frac{\sigma_{mt}}{E} = 3.1852 \ 10^{-4}$$
 (37)

Signal sa mernog mosta za komponentu *RX* je:

$$e_x = k_t \cdot U \cdot \varepsilon_x = 12.7 \cdot 10^{-3} \,\mathrm{V} \tag{38}$$

Provera naponskog stanja u mernim elementima za komponente *RY*, *RZ*, *DN*, *DM*, *DL*

Najopterećenija tačka preseka mernog elementa je tačka najudaljenija od reperne tačke aerovage.

Normalan napon u najopterećenijoj tački je:

$$\sigma_{\max} = RZ \frac{l + l_l + \frac{l_u}{2}}{W_y} + \frac{DM}{W_y} + RY \frac{l + l_l + \frac{l_u}{2}}{I_z} \frac{a}{2} + DN \frac{a}{I_z} + \frac{RX}{A} + \sigma_l$$
(39)

Stepeni sigurnosti su:

$$v_{02} = \frac{\sigma_{02}}{\sigma_{\max}} \tag{40}$$

$$\nu_D = \frac{\sigma_D}{\sigma_{\max}} \tag{41}$$

U tabeli 5 su date vrednosti pomenutih veličina za oba režima.

Tabela 5.

	σ_{max} (N/m ²)	V_{02}	VD
RSR	2.519·10 ⁸	5.23	2.78
RPO	6.290·10 ⁸	2.09	1.11

Provera naponskog stanja u spoljnim lamelama mernog elementa za komponentu *RX*

Karakteristike preseka spoljašnje lamele su:

$$A_s = a_2 \cdot b_2 = 1.6 \cdot 10^{-5} \,\mathrm{m}^2 \tag{42}$$

$$W_y^s = \frac{a_2 \cdot b_2^2}{6} = 5.333 \cdot 10^{-9} \,\mathrm{m}^3$$
 (43)

$$W_z^s = \frac{b_2 \cdot a_2^2}{6} = 2.13 \cdot 10^{-8} \,\mathrm{m}^3$$
 (44)

Šema opterećenja spoljašnje lamele usled dejstva komponente *RX* prikazana je na sl.4, a moment i odgovarajući napon su:

$$M_x^s = \frac{X_s \cdot l_4}{2} = 0.408 \text{ Nm}$$
 (45)

$$\sigma_x^s = \frac{M_x^s}{W_x^s} = 7.644 \cdot 10^7 \text{ N/m}^2$$
(46)

Slika 4. Razlaganje aksijalne sile

Šema opterećenja spoljašnje lamele usled dejstva komponente *RY* data je na sl.5. Sila, odgovarajući moment i napon su:

$$F_y^s = \frac{RY}{4 \cdot n_2} = 187.5 \text{ N}$$
 (47)

$$M_y^s = \frac{F_y^s \cdot l_4}{2} = 1.688 \text{ Nm}$$
(48)

$$\sigma_y^s = \frac{M_y^s}{W_y^s} = 7.91 \cdot 10^7 \,\mathrm{N/m^2} \tag{49}$$

Slika 5. Razlaganje bočne sile

Šema opterećenja spoljašnje lamele usled dejstva komponente *RZ* data je na sl.6, dok je odgovarajući napon:

$$\sigma_z^s = \frac{RZ}{4 \cdot n_2 \cdot A_s} = 1.142 \cdot 10^7 \,\mathrm{N/m^2} \tag{50}$$

Slika 6. Razlaganje normalne sile

Šema opterećenja spoljašnje lamele usled dejstva komponente *DL* data je na sl.7, dok su sila i odgovarajući napon:

$$F_l^s = \frac{DL}{2 \cdot l_x \cdot n_2} = 65.1 \text{ N}$$
(51)

$$\sigma_l^s = \frac{F_l^s}{A_s} = 4.069 \cdot 10^6 \text{ N/m}^2$$
 (52)

Slika 7. Razlaganje momenta valjanja

Šema opterećenja spoljašnjih lamela usled dejstva komponente *DN* data je na sl.8, dok su sila, moment i odgovarajući napon:

$$F_n^s = \frac{DN}{2 \cdot n_2 \left[l_{s1} - n_2 \left(b_2 + l_{s2} \right) \right]} = 286.5 \text{ N}$$
(53)

$$M_n^s = \frac{F_n^s \cdot l_4}{2} = 2.578 \text{ N}$$
 (54)

$$\sigma_n^s = \frac{M_n^s}{W_z^s} = 1.209 \cdot 10^8 \,\mathrm{N/m^2}$$
(55)

Slika 8. Razlaganje momenta skretanja

Šema opterećenja spoljašne lamele usled dejstva komponente *DM* data je na sl.9, dok su sila i odgovarajući napon:

$$F_m^s = \frac{DM}{2 \cdot n_2 \left[l_{s1} - n_2 \left(b_2 + l_{s2} \right) \right]} = 286.5 \text{ N}$$
(56)

$$\sigma_m^s = \frac{F_m^s}{A_s} = 1.79 \cdot 10^7 \,\mathrm{N/m^2}$$
(57)

Slika 9. Razlaganje momenta propinjanja

Ukupni normalni napon u spoljašnim lamelama iznosi:

$$\sigma_{uk}^{s} = \sigma_{x}^{s} + \sigma_{y}^{s} + \sigma_{z}^{s} + \sigma_{l}^{s} + \sigma_{n}^{s} + \sigma_{m}^{s}$$
(58)

Stepeni sigurnosti su:

$$v_{s02} = \frac{\sigma_{02}}{\sigma_{suk}} \tag{59}$$

$$\sigma_{sD} = \frac{\sigma_D}{\sigma_{suk}} \tag{60}$$

Vrednost ukupnog napona i odgovarajuće vrednosti stepena sigurnosti za oba režima date su u tabeli 6.

ı

Tabela 6

	$\sigma^{s}_{uk}(N/m^2)$	V_{02}	v_D
RSR	3.101·10 ⁸	4.23	2.26
RPO	6.799·10 ⁸	1.93	1.03

Provera naponskog stanja u kritičnim presecima aerovage

Iz dosadašnjeg iskustva u projektovanju aerovaga definisana su dva kritična preseka, jedan na završetku elementa za merenje aksijalne sile (presek C-C, sl.1) i drugi na početku konusa za vezu sa stingom (presek D-D, sl.1).

Presek na kraju elementa za aksijalnu silu

Karakteristika preseka, naponsko stanje u ravni *RZ–DM*, kao i odgovarajući stepeni sigurnosti, dati su u tabeli 7.

Tabela 7.

	$I_y(m^4)$	$M_z(\mathrm{Nm})$	$\sigma_z (N/m^2)$	V_{02}	v_D
RSR	2.937.10-7	934	7.725·10 ⁷	16.52	8.81
RPO	2.937.10-7	2224	$2.060 \cdot 10^8$	6.94	3.70

Karakteristika preseka, naponsko stanje u ravni *RY–DN*, kao i odgovarajući stepeni sigurnosti dati su u tabeli 8.

Tabela 8.

	$I_z (m^4)$	M_y (Nm)	$\sigma_y (N/m^2)$	V_{02}	v_D
RSR	1.217.10-7	934	1.790·10 ⁸	7.34	3.91
RPO	1.217.10-7	2224	$4.262 \cdot 10^9$	3.08	1.64

Presek na početku konusa za vezu sa stingom

Karakteristika preseka, naponsko stanje u ravni *RZ - DM* odnosno *RY - DN*, kao i odgovarajući stepeni sigurnosti dati su u tabeli 9.

Tabela	9.
--------	----

	$I_{z,y}$ (m ⁴)	$M_{z,y}$ (Nm)	$\sigma_{z,y}$ (N/m ²)	V_{02}	v_D
RSR	8.769.10-8	1048	$2.185 \cdot 10^8$	6.01	3.20
RPO	8.769.10-8	2528	$5.271 \cdot 10^8$	2.49	1.33

Zaključak

Novom koncepcijom aerovage postignut je željeni cilj:
nivoi signala za statičke uslove ispitivanja su zadovoljavajući, a njihove vrednosti date su u tabeli 10.

Tabela 10.

Komponenta	RX	RY	RZ	DL	DM	DN
Signal (V)·10 ⁻³	12.7	15.5	15.5	1.1	18.9	18.9

189

- komponente RY i DN kao i komponente RZ i DM imaju izlazni signal približno istog nivoa;
- aerovaga izdržava prelazna opterećenja, tj. stepeni sigurnosti su u odnosu na dinamičku izdržljivost za sve kritične preseke, bliski jedinici.

Uočava se veoma niska vrednost signala za moment valjanja *DL*. Vrednost momenta valjanja je ≈ 30 puta manja od vrednosti komponenti *DN* odnosno *DM*, pa ne postoji mogućnost dobijanja većeg signala za komponentu *DL*.

Literatura

- VITIĆ,A. Dizajn i karakteristike 3D transsoničnog radnog dela aerotunela T-38. Naučnotehnički pregled, 1966, vol.XLVI, no.4-5.
- [2] VUKOVIĆ,Đ., Istraživanje prelaznih opterećenja pri ispitivanjima u 1.5 x 1.5m trisoničnom aerotunelu T-38 ICAS 94.
- [3] JANJIKOPANJI,G. Principi projektovanja i proračuna monoblok unutrašnjih aerovaga. *Naučnotehnički pregled*, 1996, vol.XLVI, no.4-5.
- [4] JANJIKOPANJI,G. Metod proračuna šestkomponentnih aerovaga sa katalogom unutrašnjih aerovaga VTI VJ. int. dok. V3 – 12346 – A – EA, Vojnotehnički institut VJ, Beograd, 1986.

Rad primljen: 17.12.1999.god.